Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Topaksua, M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Thermoluminescence of β-particle induced Bern-4M muscovite
    Portakal-Uçar, ZG; Akca, S; Balci-Yegen, S; Yüksel, M; Dogan, T; Souadi, GO; Parlak, O; Topaksua, M; Can, N
    Bern-4M muscovite from Switzerland was investigated via X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and thermoluminescence (TL). Muscovite has the theoretical formula KAl2 (AlSi3O10)(FOH)(2), or (KF)(2)(Al2O3)(3)(SiO2)(6)(H2O). Chemical analysis of the muscovite sample was carried out using EDS for major oxides. The results indicate that muscovite includes oxygen (59.1%), silicon (18.86%), and aluminum (15.22%) as major elements and contains low concentrations of potassium, magnesium, and sodium. In standard muscovites potassium use to be 10% and oxygen 47%, probably the sample was strongly lixiviated before the analysis. The thermoluminescence spectrum exhibits a wide glow peak located at 250 degrees C with a shoulder peak at high temperature region. Trap depth and frequency factor were calculated using Hoogenstraaten's method and found to be 1.16 eV and 1.4 x 10(10) s(-1), respectively. Reproducibility test indicated that the values within +/- 5% were obtained after 15 cycles. The storage time experiments were performed for different time periods up to 1 week for dark fading.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback