Browsing by Author "Tormo L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Solid state synthesis, characterization and optical properties of Tb doped SrSnO3 phosphor(Elsevier Ltd, 2013) Kotan Z.; Ayvacikli M.; Karabulut Y.; Garcia-Guinea J.; Tormo L.; Canimoglu A.; Karali T.; Can N.In the present study, the structural and optical properties of SrSnO 3 doped with Tb ions are reported. Novel SrSnO3:Tb3+ phosphors were conventionally synthesized using a solid state reaction process under a mildly reduced atmosphere (5%H2 and 95%N2). The crystal structures, morphologies and optical properties of the resultant materials have been characterised by experimental techniques such as X-ray Diffraction (XRD), Raman spectroscopy (RS), Photoluminescence (PL), Radioluminescence (RL) and Cathodoluminescence coupled to an ESEM (ESEM-CL). The new phosphor material has good crystallization without any impurity phases, which matches with the standard JCPDS files (No. 22-1442) from XRD analysis. The PL, RL and CL measurements taken at room temperature showed that the transitions of 5D4 to 7FJ (j = 6, 5, 4, 3) corresponding to the typical 4f?4f dipole forbidden intra-configurational transitions of Tb3+ are largely independent of the host material. The green emissions of the 5D4?7F5 magnetic dipole transition at 540 nm are predominant for three types of luminescence. PL emission spectra recorded in the temperature range from 10 K to 300 K were influenced by temperature. We report anomalies in the PL spectra of SrSnO3:Tb3+ compatible with a structural phase transition at 260 K while simultaneously exciting and cooling the sample. This work clearly confirms the existence of a phase transition discovered by Singh et al. in SrSnO3 at 270 K. © 2013 Elsevier B.V. All rights reserved.Item Cathodoluminescence and thermoluminescence of ZnB2O4:Eu3+ phosphors prepared via wet-chemical synthesis(Elsevier Ltd, 2019) Dogan T.; Tormo L.; Akca S.; Kucuk N.; Guinea J.G.; Karabulut Y.; Ayvacikli M.; Oglakci M.; Topaksu M.; Can N.In present work, a series of Eu doped zinc borate, ZnB2O4, phosphors prepared via wet chemical synthesis and their structural, surface morphology, cathodoluminescence (CL) and thermoluminescence (TL) properties have been studied. Phase purity and crystal structure of as-prepared samples are confirmed by X-ray diffraction measurements (XRD) and they were well consistent with PDF card No. 39-1126, indicating the formation of pure phase. The thermoluminescence (TL) behaviors of Eu activated ZnB2O4 host lattice are studied for various beta doses ranging from 0.1 to 10 Gy. The high-temperature peak of Eu activated sample located at 192 °C exhibited a linear dose response in the range of 0.1–10 Gy. Initial rise (IR) and peak shape (PS) methods were used to determine the activation energies of the trapping centres. The effects of the variable heating rate on TL behaviour of Eu activated ZnB2O4 were also studied. When excited using an electron beam induced light emission (i.e cathodoluminescence, CL) at room temperature (RT), the as-prepared phosphors generate reddish-orange color due to predominant emission peaks of Eu3+ ions located at 576–710 nm assigned to the 5D0→7FJ (J=1,2,3, and 4) transitions. The maximum CL intensity for Eu3+ ions at 614 nm with transition 5D0→7F2 was reached Eu3+ concentration of 5 mol%; quenching occurred at higher concentrations. Strong emission peak for Eu3+ ions at 614 nm with transition 5D0→7F2 is observed. The CL experimental data indicate that ZnB2O4:Eu3+ phosphor as an orange-red emitting phosphor may be promising luminescence materials for the optoelectronic applications. © 2018 Elsevier Ltd and Techna Group S.r.l.