Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Turaci T."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The average lower reinforcement number of a graph
    (EDP Sciences, 2016) Turaci T.; Aslan E.
    Let G = (V(G),E(G)) be a simple undirected graph. The reinforcement number of a graph is a vulnerability parameter of a graph. We have investigated a refinement that involves the average lower reinforcement number of this parameter. The lower reinforcement number, denoted by re∗(G), is the minimum cardinality of reinforcement set in G that contains the edge e∗ of the complement graph G. The average lower reinforcement number of G is defined by rav (G)=1/E(G) ∑e∗∈E(G) re∗(G). In this paper, we define the average lower reinforcement number of a graph and we present the exact values for some well-known graph families. © EDP Sciences 2016.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback