Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ugur A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Keyword extraction from biomedical documents using deep contextualized embeddings
    (Institute of Electrical and Electronics Engineers Inc., 2021) Celikten A.; Ugur A.; Bulut H.
    Due to the rapidly increasing amount of biomedical publications, it has become challenging to follow scientific articles and new developments. Keywords in scientific articles provide a quick understanding and summarize the important points of the context. When keywords are not used in some biomedical articles or are not sufficient to express the content of the text, automatic keyword extraction systems are needed. This paper addresses the keyword extraction problem as a sequence labeling task where words are represented as deep contextual embeddings. We predict the keyword tags identified in sequence labeling by fine-tuning XLNET and BERT-based models such as BERT, BioBERT, SCIBERT, and RoBERTa. Our proposed method does not need extra dictionaries required by rule-based methods and feature extraction as in traditional machine learning methods. Performance evaluation on the benchmark dataset for biomedical keyword extraction shows that domain-specific contextualized embeddings (BioBERT, SciBERT) achieve state-of-the-art results compared to the general domain embeddings (BERT, RoBERTa, XLNET) and unsupervised methods. © 2021 IEEE.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback