Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ustuner M.A."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery
    (Gazi Universitesi, 2022) Bhuiyan M.R.A.; Mamur H.; Ustuner M.A.; Dilmac O.F.
    Today, with the increase of industrialization, the waste heat emitted by the industrial machines used has started to increase. Therefore, the energy efficiency of these devices also decreases. In addition, this waste heat remains a bad factor that plays a role in the world's climate change. Governments are implementing incentive policies to increase energy efficiency and reduce greenhouse gas emissions. Therefore, both scientists and engineers strive for a cleaner environment and energy. Thermoelectric generators (TEGs) are one of the devices that contribute to energy efficiency and sustainable energy production by ensuring the recovery of a certain part of the waste heat emitted by these machines to the environment. The TEGs have found traditional uses from the waste heat of microprocessors to the waste heat of stoves. However, their proliferation is limited by their efficiency less than 10% and their high purchasing costs. Academicians and engineers continue to work without slowing down to overcome these. The semiconductors with low thermal conductivity and high electrical conductivity are the main subjects studied in this field. With overcoming these difficulties, it is aimed to use thermoelectric generators in the future to convert the waste heat of almost all devices into electrical energy. Therefore, the main purpose of this study is to investigate the current innovations of TEGs and to determine the future trend. Among the main findings of this study, it is predicted that TEGs will be widely used in areas where there is a need for silent and maintenance-free energy in the future. © 2022, Gazi Universitesi. All rights reserved.
  • No Thumbnail Available
    Item
    Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine
    (Gazi Universitesi, 2024) Bhuiyan M.R.A.; Mamur H.; Ustuner M.A.; Korucu H.
    Nanomedicine encompasses a wide range of utilizations, including medical biological devices, nanoparticles (NPs), nanoelectronic biosensors, and possible future applications of molecular nanotechnologies, such as biological machines. Understanding toxicity and environmental impact problems is a current challenge in nanomedicine. The advancement of NPs in nanomedicine foresees emerging opportunities that may change healthcare by enhancing pharmaceutical effectiveness. This review may reveal novel and improved biomedical significance by delving deeper into advanced growth methodologies and NP applications in nanomedicine. NPs' outstanding physical and chemical characteristics have advanced medical, diagnostic, and screening techniques. The present review offers a current overview of organic and inorganic nanoparticles, highlighting recent advancements, obstacles, and potential applications for nanomedicine. Also, the focus of this review is on a fundamental concept that underlies the creation of novel and successful therapies using NPs in the field of nanomedicine for the human body's lungs, heart, brain, and kidneys. This extensive and insightful information source would be beneficial to the advancement of nanomedicine. © 2024, Gazi Universitesi. All rights reserved.
  • No Thumbnail Available
    Item
    Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators
    (Gazi Universitesi, 2024) Hasan M.K.; Ustuner M.A.; Korucu H.; Bhuiyan M.R.A.; Mamur H.
    This study analyzed the significant performance using COMSOL Multiphysics software of thermoelectric modules (TEMs) fabricated from aluminium oxide (Al2O3), copper (Cu), and bismuth telluride (Bi2Te3) materials, with a particular focus on investigating various leg geometries. The TEM design had Al2O3 for insulation, Cu for conducting, and Bi2Te3 for TE legs among the Cu. Investigated the influence of square and rectangular TE legs with heights of 2.0, 2.75, and 3.5 mm on critical parameters such as the normalized current density, electric potential, temperature gradient, and total internal energy within the TEM. Furthermore, the impact of varying thicknesses in the insulator and conductor layers of the TEM was explored. The results consistently demonstrated that the square leg geometry, particularly when configured with a height of 2.75 mm, outperformed other leg geometries. Consequently, it is suggested to adopt a square-shaped Bi2Te3 TEM measuring 1 mm × 1 mm × 2.75 mm with a 0.50 mm Al2O3 thickness and 0.125 mm Cu thickness during the manufacturing process. Investigate how temperature differences in TE device leg design are influenced by parameters such as the Seebeck coefficient (S), thermal conductivity (k), and electrical conductivity (σ). At lower temperatures, modeling reveals lower electrical conductivity and enhanced thermal conductivity, highlighting the significance of S = ± 2.37×10⁻⁴ V/K. This illustrates the high potential of TEM for applications in thermoelectric generator (TEG) manufacturing. © 2024, Gazi Universitesi. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback