Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vig K."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus
    (Elsevier Ltd, 2014) Tiwari P.M.; Eroglu E.; Bawage S.S.; Vig K.; Miller M.E.; Pillai S.; Dennis V.A.; Singh S.R.
    Reduced toxicity and ease of modification make gold nanoparticles (GNPs) suitable for targeted delivery, bioimaging and theranostics by conjugating cell-penetrating peptides (CPPs). This study presents the biodistribution and enhanced intracellular uptake of GNPs functionalized with VG-21, a CPP derived from vesicular stomatitis virus glycoprotein (G). Cell penetrating efficiency of VG-21 was demonstrated using CellPPD web server, conjugated to GNPs and were characterized using, UV-visible and FTIR spectroscopy, transmission electron microscopy, dynamic light scattering and zeta potential. Uptake of VG-21 functionalized GNPs (fGNPs) was tested in eukaryotic cell lines, HEp-2, HeLa, Vero and Cos-7, using flow cytometry, fluorescence and transmission electron microscopy (TEM), and inductively coupled plasmon optical emission spectroscopy (ICP-OES). The effects of nanoparticles on stress and toxicity related genes were studied in HEp-2cells. Cytokine response to fGNPs was studied invitro and invivo. Biodistribution of nanoparticles was studied in BALB/c mice using TEM and ICP-OES. VG-21, GNPs and fGNPs had little to no effect on cell viability. Upon exposure to fGNPs, HEp-2cells revealed minimal down regulation of stress response genes. fGNPs displayed higher uptake than GNPs in all cell lines with highest internalization by HEp-2, HeLa and Cos-7cells, in endocytotic vesicles and nuclei. Cytokine ELISA showed that mouse J774cells exposed to fGNPs produced less IL-6 than did GNP-treated macrophage cells, whereas TNF-α levels were low in both treatment groups. Biodistribution studies in BALB/c mice revealed higher accumulation of fGNPs than GNPs in the liver and spleen. Histopathological analyses showed that fGNP-treated mice accumulated 35ng/mg tissue and 20ng/mg tissue gold in spleen and liver respectively, without any adverse effects. Likewise, serum cytokines were low in both GNP- and fGNP-treated mice. Thus, VG-21-conjugated GNPs have enhanced cellular internalization and are suitable for various biomedical applications as nano-conjugates. © 2014 The Authors.
  • No Thumbnail Available
    Item
    Immunogenicity of RSV F DNA Vaccine in BALB/c Mice
    (Hindawi Limited, 2016) Eroglu E.; Singh A.; Bawage S.; Tiwari P.M.; Vig K.; Pillai S.R.; Dennis V.A.; Singh S.R.
    Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections. © 2016 Erdal Eroglu et al.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback