Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yalçinbas S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Approximate solution of higher order linear differential equations by means of a new rational Chebyshev collocation method
    (Association for Scientific Research, 2010) Yalçinbas S.; Özsoy N.; Sezer M.
    In this paper, a new approximate method for solving higher-order linear ordinary differential equations with variable coefficients under the mixed conditions is presented. The method is based on the rational Chebyshev (RC) Tau, Chebyshev and Taylor collocation methods. The solution is obtained in terms of rational Chebyshev (RC) functions. Also, illustrative examples are given to demonstrate the validity and applicability of the method. © Association for Scientific Research.
  • No Thumbnail Available
    Item
    Legendre series solutions of Fredholm integral equations
    (Association for Scientific Research, 2010) Yalçinbas S.; Aynigül M.; Akkaya T.
    A matrix method for approximately solving linear Fredholm integral equations of the second kind is presented. The solution involves a truncated Legendre series approximation. The method is based on first taking the truncated Legendre series expansions of the functions in equation and then substituting their matrix forms into the equation. Thereby the equation reduces to a matrix equation, which corresponds to a linear system of algebraic equations with unknown Legendre coefficients. In addition, some equations considered by other authors are solved in terms of Legendre polynomials and the results are compared. © Association for Scientific Research.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback