Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yilbaş B.S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Symmetries and approximate solution of energy transfer equations in short pulse laser heating
    (2007) Pakdemirli M.; Dolapçi I.T.; Yilbaş B.S.
    Energy transfer equations in laser heating are considered. Symmetries of the equations are calculated by Lie Group theory. Using the symmetries, the equations are transferred to an ordinary differential system. Equations are approximately solved by strained parameter method, a perturbation technique. A boundary value problem in which the laser beam transfers heat to the surface is treated. Closed form approximate solutions for electron and lattice site temperature rise are obtained for a solid layer heated at the surface with a time decaying intensity pulse. Analytical solutions are verified by numerical simulations. © 2006 Elsevier Masson SAS. All rights reserved.
  • No Thumbnail Available
    Item
    Perturbation solution for a third-grade fluid flowing between parallel plates
    (2008) Yürüsoy M.; Pakdemirli M.; Yilbaş B.S.
    The flow of non-Newtonian fluid in between two parallel plates at different temperatures is considered. A third-grade fluid with temperature-dependent viscosity is considered in the analysis and the Reynolds model used to account for it. Approximate analytical solutions for the velocity and temperature profiles are found using perturbation techniques. It is found that the influence of the non-Newtonian parameter and viscosity index is more pronounced in the region of the plate surfaces where the rate of fluid strain and temperature gradients are high. © IMechE 2008.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback