Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zor M."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The Three-Dimensional Finite Element Analysis of Fixed Bridge Restoration Supported by the Combination of Teeth and Osseointegrated Implants
    (Lippincott Williams and Wilkins, 2002) Dalkiz M.; Zor M.; Aykul H.; Toparli M.; Aksoy S.
    This study investigated the designs of osseointegrated prostheses in cases of free-end partial edentulism using comparative stress interpreted with the three-dimensional finite element method. Three free-end fixed osseointegrated prostheses models with various connection designs (ie, rigidly connected to an abutment tooth and an implant, rigidly connected to an implant and two abutment teeth, and rigidly connected to an implant and three abutment teeth) were studied. The stress values of the three models loaded with vertical, buccolingual, and linguobuccal directions at 30 ° angled to vertical axis forces were analyzed. When the fixed partial denture was connected to the three natural abutment teeth and an implant, the lowest levels of stress in the bone were noted.
  • No Thumbnail Available
    Item
    Triboelectric and Hydrophobic Characterization of Functionalized Lignocellulosic Materials; [Triboelektrična i hidrofobna svojstva funkcionaliziranih lignoceluloznih materijala]
    (University of Zagreb Faculty of Forestry and Wood Technology, 2023) Zor M.; Şen F.; Eroğlu E.; Candan Z.
    In the development of sustainable products, lignocellulosic materials with hydrophobic properties can be functionalized and used as reinforcement, especially in bio-composite materials, as well as in various applications such as packaging, water-repellent and self-renewing materials. This study is aimed to improve the surface properties and triboelectric properties of wood materials. Functionalized wood veneers were prepared by impregnating 3 different wood veneers (beech, mahogany and oak) with 5 different chemical solutions (cationic cellulose, cationic starch, polyethyleneimine, sodium alginate and carboxymethyl cellulose). Structural characterization of the functional wood materials obtained was investigated by Fourier-transform infrared spectroscopy (FT-IR) technique, wettability and surface properties were examined by contact angle measurements, and mor-phological properties were examined by scanning electron microscopy (SEM). The triboelectric properties of the devices prepared using functionalized wood materials were investigated. As a result, it was determined that the hydrophobic properties of wood materials were improved and showed triboelectric properties. It demonstrates that functionalized wood materials can be used to power low-power electronic devices. © 2023 by the author(s). Licensee Faculty of Forestry and Wood Technology, University of Zagreb.
  • No Thumbnail Available
    Item
    Preparation and Characterization of Hydroxyethyl Cellulose/Nanolignin Composite Films
    (North Carolina State University, 2024) Zor M.; Yazici H.; Şen F.; Eroğlu E.; Candan Z.; Rodrigue D.; Wang X.
    Hydroxyethyl cellulose/nanolignin composite films were prepared and characterized. The composite films were produced via casting of synthesized nanolignin added to hydroxyethyl cellulose at different concentrations (2.5%, 5%, 10%, and 20% by mass). A control film without nanolignin was also prepared for comparison. The thermal properties of the composite films were examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while the mechanical properties were determined by tensile testing and the surface properties were determined by water contact angle measurements. In addition, the morphologies of the samples were examined by scanning electron microscopy (SEM). It was observed that with the addition of nano lignin, the glass transition temperature of the composite films increased from 109 °C to 262 °C; the elongation at break increased from 19% to 51%; and the contact angles increased from 53 °C to 73 °C. The results showed that the presence of nanolignin produced materials being more flexible and more hydrophobic with higher glass transition temperatures. © 2024, North Carolina State University. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback