Browsing by Author "yesim tuskan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Kazıklarla Güçlendirilmiş Şevlerde Monte Carlo Simülasyon Yöntemi Uygulaması(2024) yesim tuskan; yusuf erzinBu çalışmada, kazıklarla güçlendirilmiş bir şevin simülasyon modeli geliştirilmiştir. Manisa-İzmir Devlet Yolu (Türkiye) doğu kesiminde yer alan hasar görmüş bir şevin güvenlik sayısının (FS) kemerlenme etkisi göz önüne alınarak değerlendirilmesi için iki boyutlu sonlu elemanlar yöntemi (2D-FEM) kullanılmıştır. Ek olarak, güvenilirliğe dayalı bir tasarım yöntemi olan Monte Carlo Simülasyonu (MCS), deprem sırasında güçlendirilmiş şevlerin stabilitesini ve güçlendirilmiş şevlerin kayma olasılığını doğru bir şekilde tahmin etmek için kullanılmıştır. Olasılık ve istatistiksel teori bilgisi, önerilen problemi çözmek ve herhangi bir fiziksel test olmaksızın sayısal çözümler üretmek için deterministik çalışmalarda kullanılmaktadır. Geliştirilen MCS ve FEM modellerinin tahmin kapasitesini değerlendirmek için güvenilirlik indeksi ve yenilme olasılığı hesaplanmıştır. Son olarak, hesaplanan indisler hem geliştirilmiş MCS'nin hem de FEM'in heyelanın FS değerlerini oldukça verimli bir şekilde tahmin edebildiğini açıkça ortaya koymaktadır.Item Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network(2024) yesim tuskan; Dilay UncuA box culvert, buried at shallow depths beneath roadways, may experience deflections caused by the dynamic impact of traffic loading and the vertical pressure exerted by the soil fill. A computational model commonly employed used to various engineering issues, including those in geotechnical applications, is the beam-on-elastic-foundation model. In this context, the Moment Distribution Method (MDM) must be applied to account for the elastic foundation. To achieve this, the internal forces acting on the ends of both exterior and interior walls are transferred to the beam-like bottom slab of the culvert, which rests on an elastic soil bed. Subsequently, the secondary internal forces are determined by refining the structural parameters, taking into account the characteristics of the elastic soil bed. This study presents the development and application of an Artificial Neural Network (ANN) model to predict the shear capacity of box culverts on elastic soil under traffic loading conditions. The proposed model is trained and validated using a comprehensive database of beam on elastic foundation solutions. The input parameters include the geometrical and mechanical properties of the culvert and the soil, as well as the loading conditions. The results of the ANN model show R2 values of 0.9633 and 0.9581 for the training and testing sets, respectively, indicating the model's excellent accuracy. These findings suggest that the ANN model can reliably predict the shear capacity of culverts.