Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Publisher

Browsing by Publisher "Balikesir University"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Simulation of glucose regulating mechanism with an agent-based software engineering tool
    (Balikesir University, 2019) Emek S.; Evren V.; Bora Ş.
    This study provides a detailed explanation of a regulating mechanism of the blood glucose levels by an agent-based software engineering tool. Repast Simphony which is used in implementation of this study is an agent-based software engineering tool based on the object-oriented programming using Java language. Agent-based modeling and simulation is a computational methodology for simulating and exploring phenomena that includes a large set of active components represented by agents. The agents are main components situated in space and time of agent-based simulation environment. In this study, we present hormonal regulation of blood glucose levels by our improved agent-based control mechanism. Hormonal regulation of blood glucose levels is an important process to maintain homeostasis inside the human body. We offer a negative feedback control mechanism with agent-based modeling approach to regulate the secretion of insulin hormone which is responsible for increasing the blood glucose levels. The negative feedback control mechanism run by three main agents that interact with each other to perform their local actions in the simulation environment. The result of this study shows the local behavior of the agents in the negative feedback loop and illustrates how to balance the blood glucose levels. Finally, this study which is thought a potential implementation of agent-based modeling and simulation may contribute to the exploration of other homeostatic control systems inside the human body. © 2019 Balikesir University. All rights reserved.
  • No Thumbnail Available
    Item
    Simulation of glucose regulating mechanism with an agent-based software engineering tool
    (Balikesir University, 2019) Emek, Sevcan; Evren, Vedat; Bora, Şebnem; Emek, Sevcan; Fakülteler > Mühendislik Ve Doğa Bilimleri Fakültesi > Bilgisayar Mühendisliği Bölümü
    This study provides a detailed explanation of a regulating mechanism of the blood glucose levels by an agent-based software engineering tool. Repast Simphony which is used in implementation of this study is an agent-based software engineering tool based on the object-oriented programming using Java language. Agent-based modeling and simulation is a computational methodology for simulating and exploring phenomena that includes a large set of active components represented by agents. The agents are main components situated in space and time of agent-based simulation environment. In this study, we present hormonal regulation of blood glucose levels by our improved agent-based control mechanism. Hormonal regulation of blood glucose levels is an important process to maintain homeostasis inside the human body. We offer a negative feedback control mechanism with agent-based modeling approach to regulate the secretion of insulin hormone which is responsible for increasing the blood glucose levels. The negative feedback control mechanism run by three main agents that interact with each other to perform their local actions in the simulation environment. The result of this study shows the local behavior of the agents in the negative feedback loop and illustrates how to balance the blood glucose levels. Finally, this study which is thought a potential implementation of agent-based modeling and simulation may contribute to the exploration of other homeostatic control systems inside the human body.
  • No Thumbnail Available
    Item
    Modified operational matrix method for second-order nonlinear ordinary differential equations with quadratic and cubic terms
    (Balikesir University, 2020) Gürbüz B.; Sezer M.
    In this study, by means of the matrix relations between the Laguerre polynomials, and their derivatives, a novel matrix method based on collocation points is modified and developed for solving a class of second-order nonlinear ordinary differential equations having quadratic and cubic terms, via mixed conditions. The method reduces the solution of the nonlinear equation to the solution of a matrix equation corresponding to system of nonlinear algebraic equations with the unknown Laguerre coefficients. Also, some illustrative examples along with an error analysis based on residual function are included to demonstrate the validity and applicability of the proposed method. © 2020 Balikesir University. All rights reserved.
  • No Thumbnail Available
    Item
    Reconstruction of potential function in inverse Sturm-Liouville problem via partial data
    (Balikesir University, 2021) Açil M.; Konuralp A.
    In this paper, three different uniqueness data are investigated to reconstruct the potential function in the Sturm-Liouville boundary value problem in the normal form. Taking account of Röhrl’s objective function, the steepest descent method is used in the computation of potential functions. To decrease the volume of computation, we propose a theorem to precalculate the minimization parameter that is required in the optimization. Further, we propose a novel time-saving algorithm in which the obligation of using the asymptotics of eigenvalues and eigenfunctions and the appropriateness of selected boundary conditions are also eliminated. As partial data, we take two spectra, the set of the jth elements of the infinite numbers of spectra obtained by changing boundary conditions in the problem, and one spectrum with the set of terminal velocities. In order to show the efficiency of the proposed method, numerical results are given for three test potentials which are smooth, nonsmooth continuous, and noncontinuous, respectively. © 2021 Balikesir University. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback