Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Publisher

Browsing by Publisher "Institute of Computer Science"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Harmonic estimation based support vector machine for typical power systems
    (Institute of Computer Science, 2016) Özdemir S.; Demirtaş M.; Aydin S.
    The power quality in electrical energy systems is very important and harmonic is the vital criterion. Traditionally Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) have been used for the harmonic distortion analysis and in the literature harmonic estimations have been made using di erent methods. As an alternative method, this paper suggested using Support Vector Machine (SVM) for harmonic estimation. The real power energy distribution system has been examined and the estimation results have been compared with measured real data. The proposed solution approach was comparatively evaluated with the ANN and LR estimation methods. Comparison results show that THD estimation values that were obtained by the SVM method are close to the THD estimation values obtained from ANN (Artificial Neural Network) and LR (Linear regression) methods. The numerical results clearly showed that the SVM method is valid for THD estimation in the power system. © 2016 CTU FTS.
  • No Thumbnail Available
    Item
    The use of self-organizing feature map networks for the prediction of the critical factor of safety of an artificial slope
    (Institute of Computer Science, 2016) Erzin Y.; Nikoo M.; Nikoo M.; Cetin T.
    In this study, the performance of three different self organization feature map (SOFM) network models denoted as SOFM1, SOFM2, and SOFM3 having neighborhood shapes, namely, SquareKohonenful, LineKohonenful, and Diamond-Kohenenful, respectively, to predict the critical factor of safety (Fs) of a widely-used artificial slope subjected to earthquake forces was investigated and compared. For this purpose, the reported data sets by Erzin and Cetin (2012) [7], including the minimum (critical) Fs values of the artificial slope calculated by using the simplified Bishop method, were utilized in the development of the SOFM models. The results obtained from the SOFM models were compared with those obtained from the calculations. It is found that the SOFM1 model exhibits more reliable predictions than SOFM2 and SOFM3 models. Moreover, the performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed to evaluate the prediction capacity of the SOFM models developed. The study demonstrates that the SOFM1 model is able to predict the Fs value of the artificial slope, quite efficiently, and is superior to the SOFM2 and SOFM3. © 2017 CTU FTS.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback