Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Publisher

Browsing by Publisher "Korean Society for Computational and Applied Mathematics"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Wijsman regularly ideal invariant convergence of double sequences of sets
    (Korean Society for Computational and Applied Mathematics, 2021) Dündar E.; Talo Ö.
    In this paper, we introduce the notions of Wijsman regularly invariant convergence types, Wijsman regularly (Iσ, I2σ )-convergence, Wi-jsman regularly (Iσ∗, I2σ∗)-convergence, Wijsman regularly (Iσ,Iσ2) -Cauchy double sequence and Wijsman regularly (Iσ,∗ I2σ∗)-Cauchy double sequence of sets. Also, we investigate the relationships among this new notions. © 2021 KSCAM.
  • No Thumbnail Available
    Item
    AN EFFICIENT ALGORITHM FOR EVALUATION OF OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI TYPE SINGULARITY KERNELS
    (Korean Society for Computational and Applied Mathematics, 2022) Kayijuka I.; Ege Ş.M.; Konuralp A.; Topal F.S.
    Herein, an algorithm for efficient evaluation of oscillatory Fourier-integrals with Jacobi-Cauchy type singularities is suggested. This method is based on the use of the traditional Clenshaw-Curtis (CC) algorithms in which the given function is approximated by the truncated Cheby-shev series, term by term, and the oscillatory factor is approximated by using Bessel function of the first kind. Subsequently, the modified moments are computed efficiently using the numerical steepest descent method or special functions. Furthermore, Algorithm and programming code in MATHEMATICA® 9.0 are provided for the implementation of the method for automatic computation on a computer. Finally, selected numerical ex-amples are given in support of our theoretical analysis. © 2022 KSCAM.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback