Browsing by Subject "Antenna design"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Microstrip Patch Antenna Design Using the Superformula(Institute of Electrical and Electronics Engineers Inc., 2020) Ulu E.; Bardak C.In this study, the super-shaped microstrip patch antenna is presented to demonstrate application of naturalistic geometry in antenna design. The shape of the antenna structure is modelled according to Superformula of Gielis, which helps to improve the antenna characteristics. The modelling of naturelike shaped patches provides the minimization of the antenna size and better return loss and gain. We have modelled a leaflike of a palm tree by a special choice of the parameters of the Superformula. The designed antenna attains -56.9 dB return loss at 5.02 GHz resonance frequency with operational bandwidth from 4.37 GHz to 6.1 GHz for -10dB. The dimensions of the antenna are minimized as 15 text{mm} times 25 text{mm}. © 2020 IEEE.Item Microwave hyperthermia application with bioimplant single slot coaxial antenna design for mouse breast cancer treatment(Turkiye Klinikleri, 2022) Görgün A.R.; Baytore C.; Comlekci S.; Tuglu M.I.; Kaya A.In this study, a novel animal model for the breast cancer treatment which contains hyperthermia is proposed. For this main purpose a low cost, interstitial, bioimplant antenna by short ended single slot design is proposed to heat the cancerous tissues. Both the theoretical background of the proposed system and the simulation and measurement results of antenna design are presented. An artificial tissue phantom model has been created under laboratory conditions and then the utility of the proposed antenna has been tested on this model. Artificial tissues have been heated by 25W to (41-44 ◦C) in a short time like 25 s. Temperature measurement is performed in real-time and wireless by a digital temperature sensor using an embedded system platform. In addition, the effectuality of the proposed hyperthermia system has been tested by the study on live mice. For this purpose, breast cancer tissues created under laboratory conditions have been transferred to experimental group Balb/c mice to induce breast cancer. According to the results of hyperthermia treatment, the breast cancer has been inhibited by the proposed hyperthermia system. All studies have been animal care with ethics committee approval. All experiments have been repeated three times by at least two observers independently. The results of this study give hope that the breast cancer treatment method using this new antenna could be used in humans in the future. For this, the number of such types of ablation studies using this type of antenna should increase. © TÜBİTAK