Browsing by Subject "COMPLEX PERMITTIVITY"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Artificial neural networks approach for ζ potential of Montmorillonite in the presence of different cations(SPRINGER) Yukselen-Aksoy, Y; Erzin, YIn this study, the zeta potential of montmorillonite in the presence of different chemical solutions was modeled by means of artificial neural networks (ANNs). Zeta potential of the montmorillonite was measured in the presence of salt cations, Na+, Li+ and Ca2+ and metals Zn2+, Pb2+, Cu2+, and Al3+ at different pH values, and observed values pointed to a different behavior for this mineral in the presence of salt and heavy metal cations. Artificial neural networks were successfully developed for the prediction of the zeta potential of montmorillonite in the presence of salt and heavy metal cations at different pH values and ionic strengths. Resulting zeta potential of montmorillonite shows different behavior in the presence of salt and heavy metal cations, and two ANN models were developed in order to be compared with experimental results. The ANNs results were found to be close to experimentally measured zeta potential values. The performance indices such as coefficient of determination, root mean square error, mean absolute error, and variance account for were used to control the performance of the prediction capacity of the models developed in this study. These indices obtained make it clear that the predictive models constructed are quite powerful. The constructed ANN models exhibited a high performance according to the performance indices. This performance has also shown that the ANNs seem to be a useful tool to minimize the uncertainties encountered during the soil engineering projects. For this reason, the use of ANNs may provide new approaches and methodologies.Item The Use of Neural Networks for the Prediction of Zeta Potential of Kaolinite(SPRINGER HEIDELBERG) Erzin, Y; Yukselen-Aksoy, YThe sign and the magnitude of the zeta potential must be known for many engineering applications. For clay soils, it is usually negative, but it is strongly dependent on the pore fluid chemistry. However, measurement of zeta potential time is time-consuming and requires special and expensive equipment. In this study, the prediction of zeta potential of kaolinite has been investigated by artificial neural networks (ANNs) and multiple regression analyses (MRAs). To achieve this, ANN and MRA models based on zeta potential measurements of kaolinite in the presence of salt and heavy metal cations at different pH values have been developed. The results of the models were compared with the experimental results. The performance indices, including coefficient of determination, root mean square error, mean absolute error, and variance, were used to assess the performance of the prediction capacity of the models developed in this study. The obtained indices make it clear that the constructed ANN models were able to predict zeta potential of kaolinite quite efficiently and outperformed the MRA models. Results showed that ANN models can be used satisfactorily to predict zeta potential of kaolinite as a rapid inexpensive substitute for laboratory techniques.