Browsing by Subject "Concrete compression strengths"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Nonlinear finite element analysis of impact behavior of concrete beam(Association for Scientific Research, 2011) Kantar E.; Erdem R.T.; Anil O.The least well known loading type is the impact loading that are affecting on to RC structures. Several impact tests have been used to demonstrate the relative brittleness and impact resistance of concrete and similar construction materials. However, none of these tests has been declared to be a Standard test, at least in part due to the lack of statistical data on the variation of the results. In this study; total ten beam specimens at which five of them are manufactured from normal concrete compression strength without reinforcement are manufactured. Remaining five had high concrete compression strength. These specimens are tested under the impacts loading that are applied by dropping constant weight hammer from five different heights. The acceleration arises from the impact loading is measured against time. The change of velocity, displacement and energy is calculated for all specimens. The failure modes of the specimens with normal and high concrete compression strength are observed under the loading of constant weight impact hammer that are dropped from different heights. A finite element model that is made by using ABAQUS software is used for the simulation of experiments and model gave compatible results with experiments. © Association for Scientific Research.Item Low velocity impact behavior of concrete beam strengthened with CFRP strip(Techno Press, 2012) Kantar E.; Anil O.Nowadays CFRP (Carbon Fiber Reinforced Polymer) became widely used materials for the strengthening and retrofitting of structures. Many experimental and analytical studies are encountered at literature about strengthening beams by using this kind of materials against static loads and cyclic loads such as earthquake or wind loading for investigating their behavior. But authors did not found any study about strengthening of RC beams by using CFRP against low velocity impact and investigating their behavior. For these reasons an experimental study is conducted on totally ten strengthened RC beams. Impact loading is applied on to specimens by using an impact loading system that is designed by authors. Investigated parameters were concrete compression strength and drop height. Two different sets of specimens with different concrete compression strength tested under the impact loading that are applied by dropping constant weight hammer from five different heights. The acceleration arises from the impact loading is measured against time. The change of velocity, displacement and energy are calculated for all specimens. The failure modes of the specimens with normal and high concrete compression strength are observed under the loading of constant weight impact hammer that are dropped from different heights. Impact behaviors of beams are positively affected from the strengthening with CFRP. Measured accelerations, the number of drops up to failure and dissipated energy are increased. Finite element analysis that are made by using ABAQUS software is used for the simulation of experiments, and model gave compatible results with experiments.Item Investigation of lateral impact behavior of RC columns(Techno Press, 2018) Anil Ö.; Tuğrul Erdem R.; Tokgöz M.N.Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load. Copyright © 2018 Techno-Press, Ltd.