Browsing by Subject "Disassembly operations"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Simultaneous Determination of Disassembly Sequence and Disassembly-to-Order Decisions Using Simulation Optimization(American Society of Mechanical Engineers (ASME), 2016) Ilgin M.A.; Taşoǧlu G.T.Strict environmental regulations and increasing public awareness toward environmental issues force many companies to establish dedicated facilities for product recovery. All product recovery options require some level of disassembly. That is why, the cost-effective management of product recovery operations highly depends on the effective planning of disassembly operations. There are two crucial issues common to most disassembly systems. The first issue is disassembly sequencing which involves the determination of an optimal or near optimal disassembly sequence. The second issue is disassembly-to-order (DTO) problem which involves the determination of the number of end of life (EOL) products to process to fulfill the demand for specified numbers of components and materials. Although disassembly sequencing decisions directly affects the various costs associated with a disassembly-to-order problem, these two issues are treated separately in the literature. In this study, a genetic algorithm (GA) based simulation optimization approach was proposed for the simultaneous determination of disassembly sequence and disassembly-to-order decisions. The applicability of the proposed approach was illustrated by providing a numerical example and the best values of GA parameters were identified by carrying out a Taguchi experimental design. © Copyright 2016 by ASME.Item Disassembly line balancing with sequencing decisions: A mixed integer linear programming model and extensions(Elsevier Ltd, 2019) Edis E.B.; Ilgin M.A.; Edis R.S.Due to the acceleration of technological developments and shortening of product life cycles, product recovery has gained great importance in recent years. Disassembly line balancing (DLB) problem is one of the most important problems encountered during disassembly operations in product recovery. In this study, a single model and complete DLB problem with balancing issues, hazardousness of parts, demand quantities and direction changes is considered. Majority of DLB studies in the literature solve this problem using heuristics or metaheuristics which do not guarantee the optimality. Although a few studies present mathematical formulations for some variants of this problem, they prefer to solve the problem by using heuristics or metaheuristics due to the non-linear structure and combinatorial nature of the problem. In this study, a generic mixed integer linear programming (MILP) model is developed for the investigated problem and its performance is tested through a series of benchmark instances. The computational results demonstrate that the proposed MILP model is able to solve test instances with up to 30 tasks. Hence, it can effectively be utilized to evaluate the optimality performance of DLB approaches. Moreover, several extensions on the MILP model regarding to line balancing, hazardousness and demand of parts and direction changes are proposed and their effects are analyzed through computational studies. © 2019 Elsevier LtdItem A DEMATEL-Based Disassembly Line Balancing Heuristic(American Society of Mechanical Engineers (ASME), 2019) Ilgin M.A.Circular economy has emerged as a response to increasing environmental problems. As opposed to linear economy, circular economy aims at the preservation of energy, material, and labor contents of used products. A critical process in circular economy is product recovery which involves the recovery of materials or components from returned products through various recovery options including recycling, refurbishing, and remanufacturing. All recovery options require some level of disassembly and disassembly operations that are generally carried out in a disassembly line. Like assembly lines, disassembly lines must be balanced in order to ensure the effective operation of the line. Mathematical programming techniques, metaheuristics, and various heuristic procedures were employed in order to solve different types of disassembly line balancing problem (DLBP). However, the use of multi-attribute decision making techniques is limited to few studies. In this study, we propose a DEMATEL-based disassembly line balancing approach which does not require extensive knowledge in operations research and computer programming. A solution can be obtained by carrying out basic matrix operations and following the steps of the approach. Two numerical examples are also provided in order to present the applicability of the proposed approach. The results indicate that the proposed approach presents a satisfactory performance compared to the previously proposed approaches. Copyright © 2019 by ASME.