Browsing by Subject "GLOW CURVES"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Thermoluminescence dose and heating rate dependence and kinetic analysis of ZnB2O4:0.05Dy3+ phosphor(ELSEVIER SCIENCE BV) Balci-Yegen, S; Yüksel, M; Kucuk, N; Karabulut, Y; Ayvacikli, M; Can, N; Topaksu, MThe intention of this study is to explore the thermoluminescence (TL) behavior of beta irradiated 5% Dy3+ doped zinc borate (Zn(BO2)(2):0.05Dy(3+)) phosphor prepared using the nitric acid method. The TL glow curve corresponding from 1 Gy to 80 Gy beta irradiation (preheated at 140 degrees C) shows a maxima at c.a. 180 degrees C. The dependence of heating rate was tested and found out that thermal quenching effect was dominating on TL glow curves as the heating rate increases. The dose response of the phosphor material exposed to beta radiation was investigated. Deconvolution was applied using the peak fit method on the glow curve for optimized conditions. Also peak shape (PS), various heating rates (VHR) and computerized glow curve deconvolution (CGCD) methods were used to evaluate the trapping level parameters, namely trap depth (E), frequency factor (s) and order of kinetics (b) associated with the main glow curve in Zn(BO2)(2):0.05Dy(3+) phosphor after beta irradiation of 20 Gy. The values of trap depth corresponding with the TL glow peak at 180 degrees C were found to be 0.93 eV, 0.92 +/- 0.05 and 1.05 +/- 0.02 respectively. Furthermore W and c parameters characterizing thermal quenching based on the Mott-Seitz theory were determined as 0.31 +/- 0.04 eV and 162.55. The TL mechanism appears more likely to get second order kinetics, suggesting the probability of re-trapping of charge carriers by emptied traps.Item Thermoluminescence of Ce and Nd co-doped CaF2 phosphors after beta irradiation(ELSEVIER) Yazan, H; Portakal-Uçar, ZG; Akça, S; Topaksu, M; Townsend, PD; Can, NIn this study, we have synthesized CaF2:Nd3+,Ce3+ phosphors by solid state reaction method. The thermoluminescence (TL) properties of the family of synthesized phosphors (CaF2:Ce3+ and CaF2:Ce3+,Nd3+) were investigated using a combination of a SCHOTT BG39 and HC414/46 filters. This gave the highest TL intensity of each phosphor after 10 Gy beta-irradiation. Two TL glow peaks of CaF2:Nd3+,Ce3+ phosphor are centered at around 90 and 265 degrees C (with a heating rate of 2 degrees Cs-1). The glow peaks displayed a linear dose response in the range of 0.1-50 Gy. Various heating rates (VHR) were performed between 0.5 and 10 degrees Cs-1. It was seen that the TL intensity at 90 degrees C decreases and peak maximum temperature shifts to higher temperatures with an increasing heating rate. The TL intensity of the glow peak located at 265 degrees C increases with heating rate. The initial rise (IR) applied after T-M-T-stop experiment and computerized glow curve deconvolution (CGCD) methods in addition to the VHR method on the glow curves of CaF2:Nd3+,Ce3+ phosphor were used to determine the number of peaks, the order of kinetics (b), activation energy (E) and frequency factor (s). The response of TL glow curves remained constant within +2% deviation from the initial value after 10 cycles of reuse.Item Characterization and thermoluminescence behavior of beta irradiated NaBaBO3 phosphor synthesized by combustion method(ELSEVIER SCI LTD) Oglakci, M; Akça, S; Halefoglu, YZ; Dogan, T; Ayvacikli, M; Karabulut, Y; Topaksu, M; Can, NNaBaBO3 host material was synthesized using the combustion method. In order to optimize the performance of the material, effects of sintering temperatures varying from 600 degrees to 1000 degrees C were investigated. The sintering temperature and dwell time were found to have pronounced effects on the pure NaBaBO3 material. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to confirm the phase formation and examine the surface morphology of the prepared powder material, respectively. TL behavior of NaBaBO3 was studied at various beta doses. It is seen that the sample exhibits well resolved TL glow peak at a peak temperature about 175 degrees C and corresponding TL intensity increases with the increasing beta dose. However, TL glow peak slightly shifts to lower temperature with the increasing beta dose level. This is the first TL report of a phosphor with a NaBaBO3 host. The TL kinetic parameters were estimated by the peak shape (PS) method and CGCD software. TL glow curves of NaBaBO3 consist of several traps and exhibited second order kinetics. A possible TL mechanism was also discussed using the energy level model. The obtained results can provide valuable knowledge related to the investigation of the intrinsic nature characteristics of NaBaBO3 in research fields pertaining to dosimetry.Item Thermoluminescence characterization and kinetic parameters of Dy3+ activated Ca3Y2B4O12(ELSEVIER) Hakami, J; Sonsuz, M; Kaynar, UH; Ayvacikli, M; Oglakci, M; Topaksu, M; Can, NIn this study, thermoluminescence (TL) characteristics of Ca3Y2B4O12:xDy (0 < x < 0.07) phosphor samples were studied. The samples were exposed to beta irradiation in the dose range from 0.1 Gy to 100 Gy to investigate TL dose response. The concentration of Dy3+ in Ca3Y2B4O12 phosphor was optimized and found to be 1 mass % in terms of TL signal quality. The TL glow curve appears to be consisted of three peaks which were discernible at 72 degrees C, 280 C and 376 degrees C. The trapping parameters (E, b, and s) were calculated using initial rise (IR), and variable heating rate (VHR) techniques. The trapping parameters, order of kinetics, frequency factor, and figure of merit have been all determined by means of the Glow Curve Deconvolution (GCD) method (tgcd:An R package). Ca3Y2B4O12:Dy phosphor displays efficient thermoluminescence properties.Item A study on thermoluminescence behaviour of Eu doped LaB3O6 irradiated with beta particles(PERGAMON-ELSEVIER SCIENCE LTD) Halefoglu, YZ; Oglakci, M; Portakal, ZG; Akca, S; Souadi, GO; Canimoglu, A; Topaksu, M; Can, NLantanium triborate (LaB3O6) samples doped with Eu3+ ions are synthesized via combustion route. This study primarily reports the thermoluminescence (TL) behaviour of LaB3O6 host. X-ray diffraction (XRD) pattern reveals that LaB3O6 exhibits a single phase matched with JCPDS card 98-002-3609. Dose response, reusability and trap parameters of TL glow curves are evaluated to clearly reveal the TL features. The results show that the peak positions of TL glow curves are affected by varying the concentration of Eu. The experimental results obtained from the dose-response of LaB3O6:Eu3+ (1%) which has given high TL intensity reveal that the intensity of TL given by the total area under glow curves shows a good linearity (b = 0.997) up to 20 Gy. In addition, the minimum detectable dose (MDD) value has been calculated as 1.45 mGy with a standard deviation of 0.8%. Main TL peak maxima is observed around 197 degrees C with heating rate (HR) of 2 degrees Cs-1. An anomalous HR effect is observed for this peak in the range of 0.5-20 degrees Cs-1 with beta dose of 5 Gy. To find the overlapping peak numbers and determine the kinetic parameters of the main peak of LaB3O6:Eu3+ (1%), Initial Rise (IR) method using T-m - T-stop experiment and CGCD analysis have been performed for HRs of 0.5 and 2 degrees Cs-1. It can be said that the results of the methods are in good agreement when same trap numbers (at least eight separate peaks for both) and close energy values are taken into consideration. Deconvolution procedure of LaB3O6: Eu3+(1%) is performed using general order kinetic equation by R studio 'tgcd'. Additionally, the lifetimes of each deconvolved peaks by CGCD of Eu activated LaB3O6 (1%) have been calculated. Based on the results it can be put forth that TL characteristics of Eu doped LaB3O6 can be used as a promising material for thermoluminescence dosimetry-environmental applications.Item Thermoluminescence properties of beta particle irradiated Ca3Al2O6 phosphor relative to environmental dosimetry(ELSEVIER) Bakr, M; Portakal-Uçar, ZG; Yüksel, M; Kaynar, ÜH; Ayvacikli, M; Benourdja, S; Canimoglu, A; Topaksu, M; Hammoudeh, A; Can, NUndoped Ca3Al2O6 phosphor was successfully synthesized through a gel-combustion method using different fuels. It was characterized by X-ray diffraction (XRD) technique and its cubic phase structure was confirmed from XRD pattern. TL data were recorded from room temperature (RT) to 500 degrees C in the heating rate of 2 degrees C/s. The glow curves of Ca3Al2O6 sample exposed to different beta doses (0-200 Gy) exhibited a significant glow peak at about 184 degrees C. The TL intensity of the glow peak exhibited very good linearity between 0.1 and 10 Gy. Following this, it was decreased at higher doses which was referred to this effect as monotonic dose dependence. Initial rise (IR), peak shape (PS), and variable heating rate (VHR) methods were used to estimate trapping parameters. Computerized glow curve deconvolution (CGCD) method via TLAnal software was also applied to estimate the number of peaks and kinetic parameters corresponding to the main glow curve in Ca3Al2O6 sample. The trapping activation energy of the main dosimetric peak was calculated to be around 1.30 eV for all methods. Present findings confirm that Ca3Al2O6 host is a promising candidate for applications in environmental dosimetry as one depicts good TL dose response with adequate sensitivity and linearity.