Browsing by Subject "Glass matrices"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Recyclability of CsPbBr3 quantum dot glass nanocomposites for their long-standing use in white LEDs(Royal Society of Chemistry, 2022) Vahedigharehchopogh N.; Erol E.; Kıbrıslı O.; Genç A.; Çelikbilek Ersundu M.; Ersundu A.E.The embedding of CsPbBr3 perovskite quantum dots (PQDs) in an inorganic glass matrix not only protects them against chemical, thermal, and photodegradation but also provides an effective strategy to isolate toxic elements such as Pb from the environment for a long period of time. Herein, the recyclability of glass is another important feature that contributes to environmental sustainability. Hence, effective and efficient recycling technologies are needed for the widespread use of PQD glass nanocomposites (GNCs) in many commercial applications. However, studies on the recyclability of CsPbBr3 PQD GNCs have not been conducted so far. Therefore, in this work, we investigate the structural, thermal, optical, and photoluminescence properties of recycled CsPbBr3 PQD GNCs to assess their suitability as long-standing and reusable luminescent materials. For this purpose, the recyclability of GNCs is checked by three repeated melt-quenching and subsequent heat-treatment processes. Although the color emission properties of GNCs under the same heat-treatment conditions show a slight variation after each recycling step, PQD GNCs almost retain their PLQY even after the last recycling step. Ultimately, a prototype white light-emitting diode is constructed by coupling recycled PQD GNCs and a commercial red phosphor on top of a blue LED chip showing high-performance with CIE color coordinates of x = 0.3228, y = 0.3470 and a CCT value of 5920 K. The findings of this work reveal that the recyclability of PQD GNCs holds great promise for a more sustainable technology. © 2022 The Royal Society of Chemistry.Item Graphene-bioactive glass composites: Structural, Vickers hardness, and gamma-ray attenuation characteristics(Frontiers Media S.A., 2023) Deliormanli A.M.; ALMisned G.; Ene A.; Tekin H.O.Introduction: Graphene-based materials have gained increasing attention for use in radiation attenuation applications. In this study, pristine graphene nanoplatelet-containing (1, 3, 5, and 10 wt%) borate-based bioactive glass composites were prepared. Methods: Structural properties, Vickers microhardness, and gamma-ray radiation shielding properties of the fabricated composites were examined in detail. Results and Discussion: Results revealed that the inclusion of the graphene in the glass matrix led to a decrease in the bulk density of the glass-based composites from 2.41 to 2.31 g/cm3. Similarly, a decrease in Vickers hardness was obtained as the graphene concentration was increased due to a convoluted effect of the non-uniform distribution of graphene nanoplatelets in the bioactive glass matrix and the higher residual porosity. Vickers hardness of the bare and the 10 wt% graphene-containing bioactive glass discs were measured to be 5.03 ± 0.28 GPa and 1.87 ± 0.56 GPa, respectively. On the other hand, the incorporation of graphene starting from 3 wt% decreased the crack propagation after indentation which may be attributed to an increase in fracture toughness. In the study, fundamental gamma ray absorption properties of graphene-containing bioactive glasses were examined in the 0.015–15 MeV incident photon energy range. For this purpose, the Py-MLBUF code was employed to determine gamma ray absorption parameters. Results showed that linear attenuation coefficients of the glass-based composites decreased due to a decrease in the density of the samples. On the other hand, as graphene was incorporated into the bioactive glass structure, exposure buildup factor and energy absorption buildup factor values increased. The growing graphene ratio in the glass structure contributed negatively to the photon’s tendency to interact with the material. Copyright © 2023 Deliormanli, ALMisned, Ene and Tekin.