Browsing by Subject "Gradient boosting"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform(2013) Erdal H.I.; Karakurt O.; Namli E.This paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R 2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2 WBANN=0.9397, R2WGBANN=0.9528). © 2012 Elsevier Ltd.Item Machine learning approach to predict the mechanical properties of cementitious materials containing carbon nanotubes(Elsevier Ltd, 2024) Okasha N.M.; Mirrashid M.; Naderpour H.; Ciftcioglu A.O.; Meddage D.P.P.; Ezami N.This research explores the use of machine learning to predict the mechanical properties of cementitious materials enhanced with carbon nanotubes (CNTs). Specifically, the study focuses on estimating the elastic modulus and flexural strength of these novel composite materials, with the potential to significantly impact the construction industry. Seven key variables were analyzed including water-to-cement ratio, sand-to-cement ratio, curing age, CNT aspect ratio, CNT content, surfactant-to-CNT ratio, and sonication time. Artificial neural network, support vector regression, and histogram gradient boosting, were used to predict these mechanical properties. Furthermore, a user-friendly formula was extracted from the neural network model. Each model performance was evaluated, revealing the neural network to be the most effective for predicting the elastic modulus. However, the histogram gradient boosting model outperformed all others in predicting flexural strength. These findings highlight the effectiveness of the employed techniques, in accurately predicting the properties of CNT-enhanced cementitious materials. Additionally, extracting formulas from the neural network provides valuable insights into the interplay between input parameters and mechanical properties. © 2024 The Authors