Browsing by Subject "Low-voltage electron beams"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Comprehensive study of photoluminescence and cathodoluminescence of Eu and Tb doped Mg2SiO4 prepared via a solid-state reaction technique(Elsevier B.V., 2020) Ucar Z.G.P.; Akca S.; Dogan T.; Halefoglu Y.Z.; Kaynar U.H.; Ayvacikli M.; Guinea J.G.; Topaksu M.; Can N.We report narrow-band green-red emitting Mg2SiO4 phosphors successfully synthesized through solid-state reaction method, and the cathodoluminescence (CL) and photoluminescence (PL) properties of the samples were investigated in detail. Under electron beam and 275 nm excitation, Mg2SiO4 phosphors doped with various Eu3+ and Tb3+ concentrations in the range of 1 mol % up to 10 mol % exhibit typical green and red emissions, respectively. Tb doped samples were efficiently excited by a low voltage electron beam and UV light, yielding several emission peaks between 370 and 760 nm, and produced a bright green light peaking at 541 nm due to the 5D4 →7F5 transition. Eu3+ doped samples exhibited CL and PL emission spectra from 5D0 to 7Fj manifold transitions of Eu3+. A strong red-light emission peaking at 610 nm also supports the incorporation of Eu3+ ions. A concentration quenching effect was observed and discussed for both phosphors. The optimal doping concentration of Eu3+ and Tb3+ doped phosphors was 7 mol %. In view of the outstanding performance in the PL and CL, the Mg2SiO4:Eu3+, Tb3+ can be considered as a promising green and red phosphor in solid-state lighting applications. © 2020 Elsevier B.V.Item Cathodoluminescence and photoluminescence properties of Dy doped La2CaB10O19 phosphor(Elsevier B.V., 2020) Ayvacikli M.; Kaynar Ü.H.; Karabulut Y.; Guinea J.G.; Dogan T.; Can N.In this study, we report a detailed analysis of the photoluminescence (PL) and cathodoluminescence (CL) properties of La2CaB10O19 (LCB) doped with Dy ion. Dy doped LCB materials were successfully synthesized using a sol-gel combustion method. Dy doped LCB has the monoclinic structure with lattice parameters a = 11.02067 Å, b = 6.55755 Å, c = 9.10541 Å and α = γ = 90.00, and β = 91.49°. Under the excitation by a low voltage electron beam and pulse laser at 349 nm, the LCB:Dy3+ phosphor produces the characteristic emission bands of Dy3+ due to intra-configuration transitions of 4F9/2 → 6H15/2 (480 nm, blue), 4F9/2 → 6H13/2 (574 nm, yellow), 4F9/2 → 6H11/2 (662 nm, red) and 4F9/2 → 6H9/2 (752 nm, red). The concentration quenching phenomenon was observed in both CL and PL measurements and optimum doping concentration was estimated to be 2%. We suggest that the concentration quenching mechanism of intense yellow emission at 574 nm was attributed to dipole-dipole interaction for both CL and PL. © 2020 Elsevier B.V.Item Enhancing the blue luminescence behaviour of the Li co-doped novel phosphor ZnB2O4: Tm3+(Elsevier Ltd, 2020) Kucuk N.; Kaynar Ü.H.; Akca S.; Alajlani Y.; Yin L.; Wang Y.; Garcia Guinea J.; Bulcar K.; Dogan T.; Karabulut Y.; Ayvacikli M.; Canimoglu A.; Topaksu M.; Can N.Here we report a detailed structural analysis, and properties of the cathodoluminescence (CL), photoluminescence (PL) and 3D thermoluminescence spectra of the Tm3+ incorporated ZnB2O4 phosphor successfully synthesized through wet-chemical synthesis. The formation of a single-phase compound is verified through X-ray diffraction (XRD) studies. The phosphor shows an efficient blue emission located at 458 nm corresponding to 1D2→3F4 under both a low voltage electron beam and UV excitation. The optimal concentration of the doped Tm3+ is 0.5 mol% in CL and PL measurements. The corresponding concentration quenching mechanism is confirmed to be a multipole-multipole interaction, and the critical distance between Tm3+ ions is estimated to be 34 Å. Incorporating Li+ remarkably enhances the luminescence intensity probably because of the charge compensation effect. Li ions are speculated to fill the defects in the ZnB2O4 host and then the excitation energy transfers from the host to Tm3+. Surprisingly, the thermoluminescence spectra of ZnB2O4:Tm3+ and Li+ co-doped ZnB2O4:Tm3+ recorded in the temperature range 30–400 °C follow a different pattern compared with PL and CL data. The dominant signals come from Tm3+ sites. Above room temperature, the Tm3+ ions do not show the peak temperature movement, but do exhibit a different pattern with the addition of co-doped Li+ ions. These results indicate that these phosphors are promising candidates for luminescence-based optoelectronic devices. © 2020 Elsevier B.V.