Browsing by Subject "Neurodegenerative Diseases"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adropin and MOTS-c as new peptides: Do levels change in neurodegenerative diseases and ischemic stroke?(John Wiley and Sons Inc, 2023) Saçmacı H.; Çakır M.; Özcan S.S.Background: Neurological diseases such as Alzheimer's disease and Parkinson's disease (AD, PD), acute ischemic stroke (AIS), and multiple sclerosis (MS) are thought to be deeply affected by changes in the pathophysiological processes of neurons. As new peptides, it was aimed to evaluate the level of adropin and MOTS-c (mitochondrial open reading frame of the 12S rRNA-c) and its possible relationship with NSE (neuron-specific enolase) and NF-L (neurofilament light chain) in terms of neuronal interaction. Methods: This study was conducted with 32 patients from each subgroup and group-appropriate controls. Disease identifiers and hemogram/biochemical parameters specific to the groups of participants were obtained. Additionally, plasma adropin, MOTS-c, NSE, and NF-L levels were evaluated by the ELISA method. Results: Plasma adropin levels were decreased in the AD group and decreased in MOTS-c, AIS, and AD groups compared to the control (p < 0.05). Similar values were found in the MS group compared to its control (p > 0.05). In correlation analysis of these markers with laboratory parameters, while platelet and cholesterol levels were negatively correlated with adropin levels; platelet, lymphocyte, and triglyceride levels were positively correlated with MOTS-c (p < 0.05). Conclusion: This study provides new information about adropin may be potentially important markers in AD and MOTS-C in AIS and AD. Future studies are needed to examine the relationship between changes in metabolic profiles and these peptides. © 2022 Wiley Periodicals LLC.Item Comparative phytochemical studies on the roots of Polygala azizsancarii and P. peshmenii and neuroprotective activities of the two xanthones(Elsevier Ltd, 2023) Çalış İ.; Becer E.; Ünlü A.; Uğurlu Aydın Z.; Hanoğlu A.; Vatansever H.S.; Dönmez A.A.Six known sucrose mono-, di- and triesters and five xanthone derivatives were isolated from the roots of Polygala peshmenii Eren, Parolly, Raus & Kürschner which is a narrow species endemic to Türkiye. Among the xanthones, 1,7-dihydroxy-2,3-methylenedioxy-5,6-dimethoxy-xanthone is an undescribed compound isolated for the first time from a natural source. The studies on the roots of P. azizsancarii Dönmez have resulted in the isolation of four known compounds including sucrose mono-, di- and triesters. The structures of the sucrose esters and xanthones isolated from P. azizsancarii and P. peshmenii were established by spectroscopic methods, including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC). Neuroprotective activities of two xanthones, 1,3,6-trihydroxy-2,5,7-trimethoxyxanthone and 3-O-β-D-glucopyranosyloxy-1,6-dihydroxy-2,5,7-trimethoxyxanthone isolated from the roots of P. azizsancarii were evaluated in vitro using in a cellular model of Alzheimer's disease. SKNAS human neuroblastoma cells were used in the study and treated with different consecrations of Aβ₂₅₋₃₅ oligomer for up to 48 h. Cell viability was evaluated using MTT assay. The distribution of β-amyloid, α-synuclein, tau, JAK2, STAT3, caspase 3 and BMP-2 were investigated using indirect immunoperoxidase staining. Our results suggested that both xanthones control tau aggregation with no effect on β-amyloid plaque formation. In addition, for neuronal pathophysiology in AD cell model, decreased distributions of JAK/STAT3 and BMP2 signaling pathways were demonstrated, therefore they play a role in the protective effect on neurons in neurodegenerative disease. A significant decrease in caspase 3 immunoreactivity was detected after the administration of both compounds in AD cells. Therefore, both compounds control neuronal pathophysiology and rescue cell death in AD disease. © 2023 Elsevier Ltd