Browsing by Subject "Performances analysis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Performance analysis of combined cycle power plants: A case study(Elsevier Ltd, 2015) Ersayin E.; Ozgener L.Nowadays the difference between the supply and demand of energy continuously rises. Thus finding new energy resources and also using present resources more efficiently are the key concepts of the new century. One of the ways to use energy resources more efficient is to produce electrical energy from combined cycle power plants. In order to maintain the efficient operating conditions of the plants, performing performance analysis is a requirement. In this study a performance analysis of an operating power plant is performed with actual operating data acquired from power plant control unit. The analysis is performed by using first and second law thermodynamics. Energy and exergy efficiencies of the each component of the power plant system are calculated and also parametric analysis is performed. After applying first law and second law of thermodynamics, energy and exergy efficiencies of the combined cycle power plant are found as 56% and 50.04% respectively and it is found that combustion chamber has the most exergy destruction rate among the system components. According to the calculation results, improvement and modification suggestions are presented. © 2014 Elsevier Ltd. All rights reserved.Item A micromechanical approach to elastic modulus of long-term aged chicken feather fibre/poly(lactic acid) biocomposites(Walter de Gruyter GmbH, 2022) Akderya T.; Ozmen U.; Baba B.O.The modulus of elasticity is a critical parameter for the performance design and analysis of biofibre-based biocomposite materials. As a result of criteria such as internal heterogeneity, the random distribution of fibres and the success of interfacial adhesion between the fibre and the matrix, it becomes difficult to predict the modulus of elasticity in practical ways. Therefore, one of the aims of this study is to determine the modulus of elasticity of biocomposite material reinforced with discontinuous and random fibres by means of micromechanical models and experimentally. In addition, it is also aimed to reveal which micromechanical model can be used reliably in predicting the modulus of elasticity of both aged and non-aged biocomposite materials due to the relationship between the analytical and experimental results. In order to achieve these objectives, initially, chicken feather fibre/poly (lactic acid) biocomposite specimens having 2, 5 and 10 % chicken feather fibre mass fractions were mixed and manufactured by extruding, and subsequently, tensile test specimens according to the appropriate standard were formed by the injection-moulding method. An agreement between the moduli of elasticity obtained from 6 micromechanical models and experimentally from the slope of the stress-strain curves resulting from tensile tests was determined. © 2022 Walter de Gruyter GmbH, Berlin/Boston.Item Performance Analysis of Grid Forming Converters for a Didactic Smart Grid System(Institute of Electrical and Electronics Engineers Inc., 2022) Tozak M.; Taskin S.; Sengor I.Grid forming control for inverter-dominated power systems of the future is crucial as it enables more renewable penetration and provides enhanced stability. In this paper, a power system that consists of both Synchronous Machines (SM) and Grid Forming Controlled PV system is modeled and simulated in MATLAB®/Simulink®. Moreover, the real parameters of laboratory pieces of equipment in Manisa Celal Bayar University Smart Grid Laboratory (MCBU-SGLab) are used throughout the study. In addition, various Grid Forming Converter control methods such as droop control, matching control, and dispatchable virtual oscillator control are compared in terms of frequency stability under different conditions. © 2022 IEEE.