Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Solid state emission"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Improvement of intramolecular charge transfer within a donor–acceptor blend by doping novel synthesized benzothiadiazole small molecules in solid state
    (Optical Materials, 2014) Dinçalp, Haluk; Murat, Gözde; İçli, Sıddık; Dinçalp, Haluk; Murat, Gözde; Fakülteler > Mühendislik Ve Doğa Bilimleri Fakültesi > Kimya Bölümü
    Three electron-deficient small molecules based on 2,1,3-benzothiadiazole (BTD) units namely, 4,7-bis (3-methoxyphenyl)-2,1,3-benzothiadiazole (BT1), (3-{7-[3-(dimethylamino)phenyl]-2,1,3-benzothiadi azole-4-yl}phenyl)dimethylamine (BT2) and 3,30 -(2,1,3-benzothiadiazole-4,7-dyl)dianiline (BT3) were synthesized and their photophysical properties were investigated systematically to understand their potential usage in ternary organic solar cells (OSCs) as additive material to enhance the cell efficiency. All these molecules show broad absorption bands in 350–750 nm on glass substrate and their optical band gaps were calculated to be around 2.50–2.80 eV. BTD fluorescence dynamics were measured in polymer:BT1:fullerene blends with varying emission wavelengths of active layer. Fluorescence emission and time resolved measurements indicated photoinduced energy shift from BT1 dye to fullerene and also from polymer to BT1 dye upon excitation of the active layer.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback