Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Tabular data"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    OPPCAT: Ontology population from tabular data
    (SAGE Publications Ltd., 2019-02) Öztürk, Övünç; Öztürk, Övünç; Fakülteler > Mühendislik Ve Doğa Bilimleri Fakültesi > Bilgisayar Mühendisliği Bölümü
    In order to present large amount of information on the Web to both users and machines, it is urgently needed to structure Web data. E-commerce is one of the areas where increasing data bottlenecks on the Web inhibit data access. Ontological display of the product information enables better product comparison and search applications using the semantics of the product specifications and their corresponding values. In this article, we present a framework called OPPCAT, which is used for semi-automatic ontology population from tabular data in e-commerce stores and product catalogues. As a result, OPPCAT allows tabular data to be used for mass production of ontology content. First, we present the common patterns in tabular data which obstruct semi-automatic production of ontologies. Then, we suggest solutions which automatically fix these errors. Finally, we define an algorithm to build ontology content semi-automatically.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback