Browsing by Subject "Wet chemical synthesis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Thermoluminescence spectra of Tm doped ZnB 2 O 4 phosphor prepared via a wet-chemical synthesis(Elsevier Ltd, 2019) Bulcar K.; Kucuk N.; Topaksu M.; Can N.In this paper we describe the thermoluminescence (TL) characteristics of 0.8 mol% Tm 3+ doped ZnB 2 O 4 phosphors prepared by a wet-chemical method. The TL glow curves of the phosphor sample consisted of three peaks located at 181 °C, 213 °C and 351 °C. The glow peak TL temperature (T m ) at which the TL glow peak occurs shifts toward the higher temperature side whilst the heating ramp rate increases and also the peak TL intensity (I m ) decreases. The TL glow curves are characterized by evaluating various dosimetric characteristics of scrutinized samples. The T m −T stop investigations on regenerated TL signals revealed that there are five different traps in the phosphor with energy values in the range of 0.61–1.71 eV. The dose responses increased in a linear way for 3 peaks with the beta-ray exposure in the dose range of 0.11–60 Gy. The process of applying 10 Gy dose was repeated for ten successive irradiation cycles to check reproducibility and the maximum variation was found to be less than 1% from the average value. These results provide valuable knowledge for use of the characteristics of T m doped ZnB 2 O 4 in dosimetry research. © 2019 Elsevier LtdItem Cathodoluminescence and thermoluminescence of ZnB2O4:Eu3+ phosphors prepared via wet-chemical synthesis(Elsevier Ltd, 2019) Dogan T.; Tormo L.; Akca S.; Kucuk N.; Guinea J.G.; Karabulut Y.; Ayvacikli M.; Oglakci M.; Topaksu M.; Can N.In present work, a series of Eu doped zinc borate, ZnB2O4, phosphors prepared via wet chemical synthesis and their structural, surface morphology, cathodoluminescence (CL) and thermoluminescence (TL) properties have been studied. Phase purity and crystal structure of as-prepared samples are confirmed by X-ray diffraction measurements (XRD) and they were well consistent with PDF card No. 39-1126, indicating the formation of pure phase. The thermoluminescence (TL) behaviors of Eu activated ZnB2O4 host lattice are studied for various beta doses ranging from 0.1 to 10 Gy. The high-temperature peak of Eu activated sample located at 192 °C exhibited a linear dose response in the range of 0.1–10 Gy. Initial rise (IR) and peak shape (PS) methods were used to determine the activation energies of the trapping centres. The effects of the variable heating rate on TL behaviour of Eu activated ZnB2O4 were also studied. When excited using an electron beam induced light emission (i.e cathodoluminescence, CL) at room temperature (RT), the as-prepared phosphors generate reddish-orange color due to predominant emission peaks of Eu3+ ions located at 576–710 nm assigned to the 5D0→7FJ (J=1,2,3, and 4) transitions. The maximum CL intensity for Eu3+ ions at 614 nm with transition 5D0→7F2 was reached Eu3+ concentration of 5 mol%; quenching occurred at higher concentrations. Strong emission peak for Eu3+ ions at 614 nm with transition 5D0→7F2 is observed. The CL experimental data indicate that ZnB2O4:Eu3+ phosphor as an orange-red emitting phosphor may be promising luminescence materials for the optoelectronic applications. © 2018 Elsevier Ltd and Techna Group S.r.l.Item Enhancing the blue luminescence behaviour of the Li co-doped novel phosphor ZnB2O4: Tm3+(Elsevier Ltd, 2020) Kucuk N.; Kaynar Ü.H.; Akca S.; Alajlani Y.; Yin L.; Wang Y.; Garcia Guinea J.; Bulcar K.; Dogan T.; Karabulut Y.; Ayvacikli M.; Canimoglu A.; Topaksu M.; Can N.Here we report a detailed structural analysis, and properties of the cathodoluminescence (CL), photoluminescence (PL) and 3D thermoluminescence spectra of the Tm3+ incorporated ZnB2O4 phosphor successfully synthesized through wet-chemical synthesis. The formation of a single-phase compound is verified through X-ray diffraction (XRD) studies. The phosphor shows an efficient blue emission located at 458 nm corresponding to 1D2→3F4 under both a low voltage electron beam and UV excitation. The optimal concentration of the doped Tm3+ is 0.5 mol% in CL and PL measurements. The corresponding concentration quenching mechanism is confirmed to be a multipole-multipole interaction, and the critical distance between Tm3+ ions is estimated to be 34 Å. Incorporating Li+ remarkably enhances the luminescence intensity probably because of the charge compensation effect. Li ions are speculated to fill the defects in the ZnB2O4 host and then the excitation energy transfers from the host to Tm3+. Surprisingly, the thermoluminescence spectra of ZnB2O4:Tm3+ and Li+ co-doped ZnB2O4:Tm3+ recorded in the temperature range 30–400 °C follow a different pattern compared with PL and CL data. The dominant signals come from Tm3+ sites. Above room temperature, the Tm3+ ions do not show the peak temperature movement, but do exhibit a different pattern with the addition of co-doped Li+ ions. These results indicate that these phosphors are promising candidates for luminescence-based optoelectronic devices. © 2020 Elsevier B.V.