Browsing by Subject "receptor down regulation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Src/Abl kinase inhibitor, bosutinib, downregulates and inhibits PARP enzyme and sensitizes cells to the DNA damaging agents(Turkish Biochemistry Society, 2018) Kirmizibayrak P.B.; Ilhan R.; Yilmaz S.; Gunal S.; Tepedelen B.E.Background: Poly(ADP-ribosyl)ation (PARylation) catalyzed mainly by PARP1 is a highly regulated posttranslational modification associated with several pathways in cellular physiology and genotoxic deoxyribonucleic acid (DNA) damage response. PAR polymers and PARP enzyme function in DNA integrity maintenance and several PARP inhibitors have entered clinical phase studies for cancer therapies. Material and methods: The effect of bosutinib, a dual Src/ Abl kinase inhibitor, on PARylation was fluorometrically measured. The cytotoxic and chemosensitizing effects were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The levels of DNA repair proteins and PARP enzyme were examined by immunoblotting. Results: In this study, bosutinib is characterized as a novel PARP inhibitor. Bosutinib inhibited oxidative stress-induced cellular PARylation and nuclear foci formation by downregulating PARP1 levels. Bosutinib was found to be more cytotoxic on Capan1 cells with BRCA2 mutation. Furthermore by acting as a chemosensitizer, bosutinib enhanced the cytotoxicity of doxorubicin (DOXO) and etoposide (ETP) by decreasing phosphorylation of DNA repair enzymes checkpoint kinase 1 (Chk1) and ataxia-telangiectasia mutated (ATM). Conclusion: By inhibition of both PARP and DNA damage checkpoint kinases, bosutinib increased the phospho-H2AX levels, an early indicator of DNA double strand breaks. © 2018 Turkish Biochemistry Society. All rights reserved.Item Origanum Sipyleum Methanol Extract in Combination with Ponatinib Shows Synergistic anti-Leukemic Activities on Chronic Myeloid Leukemia Cells(Taylor and Francis Ltd., 2022) Kayabasi C.; Yilmaz Susluer S.; Balci Okcanoglu T.; Ozmen Yelken B.; Mutlu Z.; Goker Bagca B.; Caliskan Kurt C.; Saydam G.; Durmuskahya C.; Kayalar H.; Ozbilgin A.; Biray Avci C.; Gunduz C.Origanum sipyleum is used in folk medicine due to its anti-inflammatory, antimicrobial, and antioxidant properties. Ponatinib, an effective tyrosine kinase inhibitor in the treatment of chronic myeloid leukemia (CML), has severe side effects. Thus, we aimed to determine a novel herbal combination therapy that might not only increase the anti-leukemic efficacy but also reduce the dose of ponatinib in targeting CML cells. Origanum sipyleum was extracted with methanol (OSM), and secondary metabolites were determined by phytochemical screening tests. The cytotoxic effects of OSM on K562 cells were measured by WST-1 assay. Median-effect equation was used to analyze the combination of ponatinib and OSM (p-OSM). Apoptosis, proliferation, and cell-cycle were investigated by flow-cytometry. Cell-cycle-related gene expressions were evaluated by qRT-PCR. OSM that contains terpenoids, flavonoids, tannins, and anthracenes exhibited cytotoxic effects on K562 cells. The median-effect of p-OSM was found as synergistic; OSM reduced the ponatinib dose ∼5-fold. p-OSM elevated the apoptotic and anti-proliferative activity of ponatinib. Consistently, p-OSM blocked cell-cycle progression in G0/G1, S phases accompanied by regulations in TGFB2, ATR, PP2A, p18, CCND1, CCND2, and CCNA1 expressions. OSM enhanced the anti-leukemic activity of ponatinib synergistically via inducing apoptosis, suppressing proliferation, and cell-cycle. As a result, OSM might offer a potential strategy for treating patients with CML. © 2022 Taylor & Francis Group, LLC.