Browsing by Subject "transcription factor Nrf2"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage(Taylor and Francis Ltd, 2016) Monastra G.; De Grazia S.; Cilaker Micili S.; Goker A.; Unfer V.Introduction: Alpha lipoic acid (ALA) is an essential mitochondrial co-factor and, as a free molecule, it can exert multi-level immunomodulatory functions. Both ALA and its reduced form, dihydrolipoic acid (DHLA), are believed to be able to chelate heavy metals, to regenerate essential antioxidants and to repair important molecules damaged by oxidation. The largest part of the effects of ALA/DHLA couple can be explained by a specific stimulatory activity on Nrf2-dependent gene transcription and by the inhibition of NF-kB activity. These features have prompted its use as a drug for several diseases. Areas covered: This article surveys the main features of ALA/DHLA and its therapeutic effects. Its complex and differentiated function cannot simply be reduced to anti-inflammatory, antioxidant and detoxifying action. We highlight its capability to finely modulate several physiological pathways when unbalanced. In particular, we focus our attention on pregnancy, in relation to ALA administration by oral route and by a new formulation for vaginal delivery, in patients with threatened miscarriage. Expert opinion: Future efforts should be devoted to explaining carefully ALA/DHLA mechanism of action to reactivate the physiological balance when modified during pregnancy. On the other hand, ALA safety in pregnant women and its pharmacokinetics by vaginal route, have to be studied in depth. Moreover, ALA efficacy has to be confirmed in a much larger sample of patients. © 2016 Informa UK Limited, trading as Taylor & Francis Group.Item Oxytocin mitigates peripheral nerve damage via Nrf2 and irisin pathway(Verduci Editore s.r.l, 2023) Tosyali H.K.; Bora E.S.; Çinaroğlu O.S.; Erbaş O.OBJECTIVE: Peripheral nerve injuries present challenges in achieving full functional restoration, necessitating effective therapeutic strategies. Oxytocin, known for its neuroprotective and anti-inflammatory properties, has shown potential in nerve recovery. This study aims to elucidate the role of oxytocin in nerve recovery via the nuclear factor erythroid 2-related factor 2 (Nrf2) and irisin pathways. MATERIALS AND METHODS: Adult male Wistar rats (n=30) were subjected to surgical dissection of sciatic nerves and divided into Control, Surgery and Saline Group, and Surgery and Oxytocin (OT) group. Electromyographic (EMG) recordings, inclined plane tests, and histological assessments were conducted to evaluate nerve function, and Nerve growth factor (NGF) immunoexpression and axonal parameters were measured. Plasma irisin levels, nerve NGF, and Nrf2 levels were quantified. RESULTS: The Surgery and Saline Group exhibited impaired EMG latency, amplitude, and inclined plane score compared to Controls, while the Surgery and OT Group demonstrated improved outcomes. Histomorphometric analysis revealed increased NGF immunoexpression, axon number, diameter, and reduced fibrosis in the Surgery and OT Group. Plasma irisin levels were higher following oxytocin administration. Additionally, nerve NGF and Nrf2 levels were elevated in the Surgery and OT Group. CONCLUSIONS: OT administration mitigated nerve injury effects, promoting functional and histological improvements. Elevated NGF and Nrf2 levels, along with increased irisin, indicated the potential interplay of these pathways in enhancing nerve recovery. The results align with OT’s neuroprotective and anti-inflammatory roles, suggesting its potential as a therapeutic intervention for nerve injuries. OT’s positive impact on nerve recovery is associated with its modulation of Nrf2 and irisin pathways, which collectively enhance antioxidant defense and neurotrophic support and mitigate inflammation. These findings underline OT’s potential as a therapeutic agent to enhance nerve regeneration and recovery. Further research is needed to elucidate the intricate molecular mechanisms and potential clinical applications of OT in nerve injury management. © 2023 Verduci Editore s.r.l. All rights reserved.Item The Role and Mechanisms of Action of Catechins in Neurodegenerative Diseases(Routledge, 2023) Özduran G.; Becer E.; Vatansever H.S.The prevalence, incidence and mortality rates of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease are gradually increasing. New approaches are being developed to manage the progression and treatment of neurodegenerative diseases. Catechins, polyphenolic compounds, are key compounds that demonstrate therapeutic effects with their properties such as antioxidant, anti-inflammatory, anti-apoptotic properties in the prevention and treatment of neurodegenerative diseases. The therapeutic effects of catechins have been exhaustively studied in human and animal models. Catechins can have anti-inflammatory effects by suppressing inflammatory pathways and cytokines, as well as antioxidant effects such as chelating metal ions and scavenging radicals. They might reduce phosphorylation of tau proteins, aggregation of amyloid-beta and apoptotic proteins release. They can also decrease alpha-synuclein accumulation and increase dopamine levels. With all these effects, they can have an effect on neurodegenerative diseases. This review points to the potential mechanisms of catechins in neurodegenerative diseases, based on their findings in the literature review. Key teaching points Catechins can reduce amyloid-β plaque aggregation and tau phosphorylation. Catechins can decrease alfa-synuclein levels. Catechins can protect neuronal cells with their anti-apoptotic effect. More comprehensive studies are needed to clarify this issue. © 2021 American College of Nutrition.