Improved approach to the solution of inverse kinematics problems for robot manipulators

No Thumbnail Available

Date

2000

Journal Title

Journal ISSN

Volume Title

Abstract

A structured artificial neural-network (ANN) approach has been proposed here to control the motion of a robot manipulator. Many neural-network models use threshold units with sigmoid transfer functions and gradient descent-type learning rules. The learning equations used are those of the backpropagation algorithm. In this work, the solution of the kinematics of a six-degrees-of-freedom robot manipulator is implemented by using ANN. Work has been undertaken to find the best ANN configurations for this problem. Both the placement and orientation angles of a robot manipulator are used to fin the inverse kinematics solutions.

Description

Citation