Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3
dc.contributor.author | Ermis, I | |
dc.contributor.author | Çorumlu, V | |
dc.contributor.author | Sertkol, M | |
dc.contributor.author | Öztürk, M | |
dc.contributor.author | Kaleli, M | |
dc.contributor.author | Çetin, A | |
dc.contributor.author | Turemis, M | |
dc.contributor.author | Ari, M | |
dc.date.accessioned | 2025-04-10T10:36:13Z | |
dc.date.available | 2025-04-10T10:36:13Z | |
dc.description.abstract | The solid electrolyte is one of the most important components for a solid oxide fuel cell (SOFC). The various divalent or trivalent metal ion-doped bismuth-based materials exhibit good ionic conductivity. Therefore, these materials are used as electrolytes in the SOFC. In this paper, the samples of (Bi0.92-x Ho0.03Er0.05)(2)O-3 + (ZnO) (x) solutions with a 0 aecurrency sign x aecurrency sign 0.2 molar ratio are synthesized by the solid state reaction method. The detailed structural and electrical characterizations are investigated by using x-ray diffraction (XRD), alternating current electrochemical impedance spectroscopy, and scanning electron microscopy (SEM). The XRD patterns of all samples are indexed on a monoclinic symmetry with a P2(1)/c space group. In addition, the rietveld parameters are determined by using the FullProf software program. The impedance measurements of the samples are obtained at the 1 Hz to 20 MHz frequency range. The impedance value of the pellets increases with temperature. Based on the impedance results, it is found that the contribution of grain (bulk) is more than a grain boundary in terms of conductivity, which permits the attribution of a grain boundary. The ionic conductivity decreases with an increasing amount of Zn contribution. The value of highest electrical conductivity among all samples is calculated as 0.358 S cm(-1) at 800A degrees C for undoped (Bi0.92Ho0.03Er0.05)(2)O-3. | |
dc.identifier.e-issn | 1543-186X | |
dc.identifier.issn | 0361-5235 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14701/42129 | |
dc.language.iso | English | |
dc.title | Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3 | |
dc.type | Article |