Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3

dc.contributor.authorErmis, I
dc.contributor.authorÇorumlu, V
dc.contributor.authorSertkol, M
dc.contributor.authorÖztürk, M
dc.contributor.authorKaleli, M
dc.contributor.authorÇetin, A
dc.contributor.authorTuremis, M
dc.contributor.authorAri, M
dc.date.accessioned2025-04-10T10:36:13Z
dc.date.available2025-04-10T10:36:13Z
dc.description.abstractThe solid electrolyte is one of the most important components for a solid oxide fuel cell (SOFC). The various divalent or trivalent metal ion-doped bismuth-based materials exhibit good ionic conductivity. Therefore, these materials are used as electrolytes in the SOFC. In this paper, the samples of (Bi0.92-x Ho0.03Er0.05)(2)O-3 + (ZnO) (x) solutions with a 0 aecurrency sign x aecurrency sign 0.2 molar ratio are synthesized by the solid state reaction method. The detailed structural and electrical characterizations are investigated by using x-ray diffraction (XRD), alternating current electrochemical impedance spectroscopy, and scanning electron microscopy (SEM). The XRD patterns of all samples are indexed on a monoclinic symmetry with a P2(1)/c space group. In addition, the rietveld parameters are determined by using the FullProf software program. The impedance measurements of the samples are obtained at the 1 Hz to 20 MHz frequency range. The impedance value of the pellets increases with temperature. Based on the impedance results, it is found that the contribution of grain (bulk) is more than a grain boundary in terms of conductivity, which permits the attribution of a grain boundary. The ionic conductivity decreases with an increasing amount of Zn contribution. The value of highest electrical conductivity among all samples is calculated as 0.358 S cm(-1) at 800A degrees C for undoped (Bi0.92Ho0.03Er0.05)(2)O-3.
dc.identifier.e-issn1543-186X
dc.identifier.issn0361-5235
dc.identifier.urihttp://hdl.handle.net/20.500.14701/42129
dc.language.isoEnglish
dc.titleMicrostructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3
dc.typeArticle

Files