A new perturbation algorithm with better convergence properties: Multiple scales lindstedt poincare method

dc.contributor.authorPakdemirli M.
dc.contributor.authorKarahan M.M.F.
dc.contributor.authorBoyaci H.
dc.date.accessioned2024-07-22T08:22:11Z
dc.date.available2024-07-22T08:22:11Z
dc.date.issued2009
dc.description.abstractA new perturbation algorithm combining the Method of Multiple Scales and Lindstedt-Poincare techniques is proposed for the first time. The algorithm combines the advantages of both methods. Convergence to real solutions with large perturbation parameters can be achieved for both constant amplitude and variable amplitude cases. Three problems are solved: Linear damped vibration equation, classical duffing equation and damped cubic nonlinear equation. Results of Multiple Scales, new method and numerical solutions are contrasted. The proposed new method produces better results for strong nonlinearities. © Association for Scientific Research.
dc.identifier.DOI-ID10.3390/mca14010031
dc.identifier.issn1300686X
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/18970
dc.language.isoEnglish
dc.publisherAssociation for Scientific Research
dc.rightsAll Open Access; Gold Open Access
dc.subjectControl nonlinearities
dc.subjectNonlinear equations
dc.subjectNumerical methods
dc.subjectConvergence properties
dc.subjectLindstedt-Poincare method
dc.subjectMethod of multiple scale
dc.subjectMultiple scales methods
dc.subjectNumerical solution
dc.subjectPerturbation method
dc.subjectPerturbation parameters
dc.subjectVariable amplitudes
dc.subjectPerturbation techniques
dc.titleA new perturbation algorithm with better convergence properties: Multiple scales lindstedt poincare method
dc.typeArticle

Files