High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform

dc.contributor.authorErdal H.I.
dc.contributor.authorKarakurt O.
dc.contributor.authorNamli E.
dc.date.accessioned2024-07-22T08:18:28Z
dc.date.available2024-07-22T08:18:28Z
dc.date.issued2013
dc.description.abstractThis paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R 2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2 WBANN=0.9397, R2WGBANN=0.9528). © 2012 Elsevier Ltd.
dc.identifier.DOI-ID10.1016/j.engappai.2012.10.014
dc.identifier.issn09521976
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/17307
dc.language.isoEnglish
dc.subjectCompressive strength
dc.subjectForecasting
dc.subjectHigh performance concrete
dc.subjectNeural networks
dc.subjectStatistical methods
dc.subjectBagging (bootstrap aggregation)
dc.subjectCoefficient of determination
dc.subjectConcrete compressive strength
dc.subjectEnsemble models
dc.subjectGradient boosting
dc.subjectMean absolute error
dc.subjectPrediction accuracy
dc.subjectRoot mean squared errors
dc.subjectDiscrete wavelet transforms
dc.titleHigh performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform
dc.typeArticle

Files