ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE

dc.contributor.authorSahiner, B
dc.contributor.authorKazaz, M
dc.contributor.authorUgurlu, HH
dc.date.accessioned2025-04-10T10:30:32Z
dc.date.available2025-04-10T10:30:32Z
dc.description.abstractThis paper presents the curvature theory of non-null cylindrical surfaces in Minkowski 3-space. The definition of the line of striction and generator trihedron for cylindrical surfaces in Minkowski 3-space are given. The derivation formulae and Darboux instantaneous rotation vectors of generator trihedrons which play important role in robot kinematics are found. Moreover, curvature theory of a Lorentzian circular cylinder is given as an example.
dc.identifier.issn2146-1147
dc.identifier.urihttp://hdl.handle.net/20.500.14701/37140
dc.language.isoEnglish
dc.titleON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE
dc.typeArticle

Files