Tauberian theorems for statistically convergent double sequences of fuzzy numbers

dc.contributor.authorTalo Ö.
dc.contributor.authorBayazit F.
dc.date.accessioned2024-07-22T08:11:22Z
dc.date.available2024-07-22T08:11:22Z
dc.date.issued2017
dc.description.abstractIn this paper, we introduce slow oscillation and Hardy's two-sided Tauberian conditions for double sequences in n-dimensional fuzzy number space En. Besides, slow decrease and Landau's one-sided Tauberian conditions for double sequences in E1 are presented. Under these conditions we also prove Tauberian theorems for statistically convergent double sequences of fuzzy numbers. © 2017 IOS Press and the authors. All rights reserved.
dc.identifier.DOI-ID10.3233/JIFS-16573
dc.identifier.issn10641246
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/15631
dc.language.isoEnglish
dc.publisherIOS Press
dc.subjectFuzzy rules
dc.subjectDouble sequences
dc.subjectFuzzy numbers
dc.subjectSlow oscillations
dc.subjectStatistical convergence
dc.subjectTauberian conditions
dc.subjectTauberian theorem
dc.subjectFuzzy sets
dc.titleTauberian theorems for statistically convergent double sequences of fuzzy numbers
dc.typeArticle

Files