Developing an Advanced Software Requirements Classification Model Using BERT: An Empirical Evaluation Study on Newly Generated Turkish Data

dc.contributor.authorYucalar F.
dc.date.accessioned2024-07-22T08:02:20Z
dc.date.available2024-07-22T08:02:20Z
dc.date.issued2023
dc.description.abstractRequirements Engineering (RE) is an important step in the whole software development lifecycle. The problem in RE is to determine the class of the software requirements as functional (FR) and non-functional (NFR). Proper and early identification of these requirements is vital for the entire development cycle. On the other hand, manual identification of these classes is a timewaster, and it needs to be automated. Methodically, machine learning (ML) approaches are applied to address this problem. In this study, twenty ML algorithms, such as Naïve Bayes, Rotation Forests, Convolutional Neural Networks, and transformers such as BERT, were used to predict FR and NFR. Any ML algorithm requires a dataset for training. For this goal, we generated a unique Turkish dataset having collected the requirements from real-world software projects with 4600 samples. The generated Turkish dataset was used to assess the performance of the three groups of ML algorithms in terms of F-score and related statistical metrics. In particular, out of 20 ML algorithms, BERTurk was found to be the most successful algorithm for discriminating FR and NFR in terms of a 95% F-score metric. From the FR and NFR identification problem point of view, transformer algorithms show significantly better performances. © 2023 by the author.
dc.identifier.DOI-ID10.3390/app132011127
dc.identifier.issn20763417
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/11812
dc.language.isoEnglish
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAll Open Access; Gold Open Access
dc.titleDeveloping an Advanced Software Requirements Classification Model Using BERT: An Empirical Evaluation Study on Newly Generated Turkish Data
dc.typeArticle

Files