ORTHOGONAL STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN SPACES

dc.contributor.authorLee, JR
dc.contributor.authorPark, C
dc.contributor.authorAlaca, C
dc.contributor.authorShin, DY
dc.date.accessioned2025-04-10T10:35:29Z
dc.date.available2025-04-10T10:35:29Z
dc.description.abstractUsing the fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive-quadratic functional equation 2f (x+y/2) + 2f (x-y/2) = 3/2 f(x) - 1/2 f(y) + 1/2f(-y) (0.1) for all x, y with x perpendicular to y, in non-Archimedean Banach spaces. Here perpendicular to is the orthogonality in the sense of Ratz.
dc.identifier.e-issn1572-9206
dc.identifier.issn1521-1398
dc.identifier.urihttp://hdl.handle.net/20.500.14701/41510
dc.language.isoEnglish
dc.titleORTHOGONAL STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN SPACES
dc.typeArticle

Files