Stability of additive-quadratic ρ-functional equations in Banach spaces: a fixed point approach
dc.contributor.author | Park, C | |
dc.contributor.author | Kim, SO | |
dc.contributor.author | Alaca, C | |
dc.date.accessioned | 2025-04-10T10:32:30Z | |
dc.date.available | 2025-04-10T10:32:30Z | |
dc.description.abstract | Let M(1)f (x, y) : = 3/4 f (x + y) -1/4 f (-x -y) + 1/4 f (x - y) + 1/4 f(y - x) -f (x) -f (y), M(2)f(x, y) : = 2f( x + y/2) + f ( x - y/2 ) + f ( y - x/2 ) -f (x) -f (y). We solve the additive-quadratic rho-functional equations M(1)f (x, y) = rho M(2)f(x, y), (1) and M(2)f(x, y) = rho M(1)f (x, y), (2) where rho is a fixed nonzero number with rho not equal 1. Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic rho-functional equations (1) and (2) in Banach spaces. (C)2017 All rights reserved. | |
dc.identifier.e-issn | 2008-1901 | |
dc.identifier.issn | 2008-1898 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14701/38882 | |
dc.language.iso | English | |
dc.title | Stability of additive-quadratic ρ-functional equations in Banach spaces: a fixed point approach | |
dc.type | Article |