Modelling and Optimization of Uranium (VI) Ions Adsorption Onto Nano-ZnO/Chitosan Bio-composite Beads with Response Surface Methodology (RSM)

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Abstract

Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of UO22+ from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of UO22+ by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2 = 0.99) and probability F-values (F = 2.24 × 10− 10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of UO22+ ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated. © 2017, Springer Science+Business Media, LLC.

Description

Citation