A comparison of the performance of artificial intelligence techniques for optimizing the number of kanbans
No Thumbnail Available
Date
2002
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper discusses the use of modern heuristic techniques coupled with a simulation model of a Just in Time system to find the optimum number of kanbans while minimizing cost. Three simulation search heuristic procedures based on Genetic Algorithms, Simulated Annealing, and Tabu Search are developed and compared both with respect to the best results achieved by each algorithm in a limited time span and their speed of convergence to the results. In addition, a Neural Network metamodel is developed and compared with the heuristic procedures according to the best results. The results indicate that Tabu Search performs better than the other heuristics and Neural Network metamodel in terms of computational effort. Journal of the Operational Research Society.