New approximate solutions to electrostatic differential equations obtained by using numerical and analytical methods

dc.contributor.authorBildik N.
dc.contributor.authorDeniz S.
dc.date.accessioned2024-07-22T08:07:33Z
dc.date.available2024-07-22T08:07:33Z
dc.date.issued2020
dc.description.abstractIn this paper, we implement the optimal homotopy asymptotic method to find the approximate solutions of the Poisson-Boltzmann equation. We also use the results of the conjugate gradient method for comparison with those of the optimal homotopy asymptotic method. Our study reveals that the optimal homotopy asymptotic method gives more effective results than conjugate gradient algorithms for the considered problems. © 2020 Walter de Gruyter GmbH, Berlin/Boston.
dc.identifier.DOI-ID10.1515/gmj-2018-0012
dc.identifier.issn1072947X
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/13995
dc.language.isoEnglish
dc.publisherDe Gruyter
dc.rightsAll Open Access; Bronze Open Access
dc.titleNew approximate solutions to electrostatic differential equations obtained by using numerical and analytical methods
dc.typeArticle

Files