Symmetry reductions of unsteady three-dimensional boundary layers of some non-newtonian fluids
No Thumbnail Available
Date
1997
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Three-dimensional, unsteady, laminar boundary layer equations of a general model of non-Newtonian fluids are treated. In this model, the shear stresses are considered to be arbitrary functions of velocity gradients. Using Lie Group analysis, the infinitesimal generators accepted by the equations are calculated for the arbitrary shear stress case. The extension of the Lie algebra, for the case of Newtonian fluids, is also presented. A general boundary value problem modeling the flow over a moving surface with suction or injection is considered. The restrictions imposed by the boundary conditions on the generators are calculated. Assuming all flow quantities to be independent of the z-direction, the three-independent-variable partial differential system is converted first into a two-independent-variable system by using two different subgroups of the general group. Lie Group analysis is further applied to the resulting equations, and final reductions to ordinary differential systems are obtained. © 1997 Elsevier Science Ltd.