LOCALLY AND WEAKLY CONTRACTIVE PRINCIPLE IN BIPOLAR METRIC SPACES

dc.contributor.authorMutlu, A
dc.contributor.authorÖzkan, K
dc.contributor.authorGürdal, U
dc.date.accessioned2025-04-10T10:31:17Z
dc.date.available2025-04-10T10:31:17Z
dc.description.abstractIn this article, we introduce concepts of (epsilon, lambda)-uniformly locally contractive and weakly contractive mappings, which are generalizations of Banach contraction mapping, in bipolar metric spaces. Also, we express the results showing the existence and uniqueness of fixed point for these mappings.
dc.identifier.issn2146-1147
dc.identifier.urihttp://hdl.handle.net/20.500.14701/37803
dc.language.isoEnglish
dc.titleLOCALLY AND WEAKLY CONTRACTIVE PRINCIPLE IN BIPOLAR METRIC SPACES
dc.typeArticle

Files