Investigation of strontium sorption onto Kula volcanics using Central Composite Design

dc.contributor.authorKütahyali C.
dc.contributor.authorÇetinkaya B.
dc.contributor.authorAcar M.B.
dc.contributor.authorIşik N.O.
dc.contributor.authorCireli T.
dc.date.accessioned2024-07-22T08:19:31Z
dc.date.available2024-07-22T08:19:31Z
dc.date.issued2012
dc.description.abstractIn performance assessment studies, the uptake of the radioactive elements by rock formations play an important role in retarding their aqueous phase migration. Sorption studies of radionuclides have been conducted to obtain data on the distribution coefficient (K d) that is as an input parameter in the performance assessment of the geological disposal of radioactive wastes. In this work, sorption experiments were studied in a batch sorption system using Sr(NO 3) 2 solution on non-treated and HCl-treated Kula volcanics. The distribution coefficient (K d) values of Sr 2+ derived from batch experiments were used to evaluate the migration behavior of Sr 2+. Central Composite Design was used in the experiments. Sr sorption was studied as a function of pH, temperature, initial concentration of adsorbate and contact time. The results show that the K d values are higher at pH 7-9 which is the pH range of the natural waters. The kinetic data conformed better to the pseudo-second-order equation. Thermodynamic parameters ΔH°, ΔS° and ΔG° were estimated and these parameters show that adsorption is endothermic. The correlation coefficients indicate that the Langmuir model fits better for the strontium sorption onto non-treated and HCl-treated Kula volcanics with monolayer capacities as 2.04 and 1.72mg/g, respectively. © 2011 Elsevier B.V..
dc.identifier.DOI-ID10.1016/j.jhazmat.2011.11.047
dc.identifier.issn18733336
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/17720
dc.language.isoEnglish
dc.subjectAdsorption
dc.subjectGeologic Sediments
dc.subjectKinetics
dc.subjectMicroscopy, Electron, Scanning
dc.subjectRadiation Monitoring
dc.subjectRadioactive Pollutants
dc.subjectSolutions
dc.subjectSpectroscopy, Fourier Transform Infrared
dc.subjectStrontium
dc.subjectSurface Properties
dc.subjectTurkey
dc.subjectVolcanic Eruptions
dc.subjectKula
dc.subjectManisa
dc.subjectTurkey
dc.subjectAdsorption
dc.subjectDesign
dc.subjectDyes
dc.subjectExperiments
dc.subjectHydrochloric acid
dc.subjectMonolayers
dc.subjectRadioactive wastes
dc.subjectRadioactivity
dc.subjectRadioisotopes
dc.subjectRating
dc.subjectSorption
dc.subjectStrontium
dc.subjectWaste disposal
dc.subjecthydrochloric acid
dc.subjectstrontium
dc.subjectwater
dc.subjectAqueous phase
dc.subjectBatch experiments
dc.subjectBatch sorption
dc.subjectCentral composite designs
dc.subjectContact time
dc.subjectCorrelation coefficient
dc.subjectDistribution coefficient
dc.subjectGeological disposals
dc.subjectInitial concentration
dc.subjectInput parameter
dc.subjectKinetic data
dc.subjectLangmuir models
dc.subjectMonolayer capacity
dc.subjectNatural waters
dc.subjectPerformance assessment
dc.subjectpH range
dc.subjectPseudo-second-order equations
dc.subjectRadionuclide migration
dc.subjectRock formations
dc.subjectSorption experiments
dc.subjectThermodynamic parameter
dc.subjectVolcanics
dc.subjectaqueous solution
dc.subjectperformance assessment
dc.subjectpH
dc.subjectradioactive waste
dc.subjectradionuclide
dc.subjectsorption
dc.subjectstrontium
dc.subjecttemperature effect
dc.subjectthermodynamics
dc.subjectadsorption
dc.subjectadsorption kinetics
dc.subjectarticle
dc.subjectconcentration (parameters)
dc.subjectcorrelation coefficient
dc.subjectisotherm
dc.subjectmathematical model
dc.subjectpH
dc.subjectradioisotope distribution
dc.subjectthermodynamics
dc.subjectvolcano
dc.subjectRadioactive waste disposal
dc.titleInvestigation of strontium sorption onto Kula volcanics using Central Composite Design
dc.typeArticle

Files