The drag work minimization path for a flying object with altitude-dependent drag parameters

dc.contributor.authorPakdemirli M.
dc.date.accessioned2024-07-22T08:21:37Z
dc.date.available2024-07-22T08:21:37Z
dc.date.issued2009
dc.description.abstractThe work due to drag force for a flying object is considered. The density of the fluid, the drag coefficient, and the velocity are all assumed to be functions of altitude. The differential equation describing the path for minimum drag work is derived using variational calculus. A special form of this equation describing exponentially decaying fluid density is then considered. The equation is cast into a dimensionless form. One of the dimensionless parameters is the final height/final distance and the other is related to the exponential decay of the density. An analytical solution for the path is found by solving the equation. The analytical solution is approximated using Taylor series expansions and contrasted with the perturbation solution. The effect of dimensionless parameters on the path is discussed. © IMechE 2009.
dc.identifier.DOI-ID10.1243/09544062JMES1346
dc.identifier.issn09544062
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/18683
dc.language.isoEnglish
dc.subjectDifferential equations
dc.subjectDifferentiation (calculus)
dc.subjectVariational techniques
dc.subjectAnalytical solutions
dc.subjectDimensionless parameters
dc.subjectDrag forces
dc.subjectExponential decays
dc.subjectFluid densities
dc.subjectFlying objects
dc.subjectOptimum path
dc.subjectPerturbation solutions
dc.subjectPerturbations
dc.subjectSpecial forms
dc.subjectTaylor series expansions
dc.subjectVariational calculus
dc.subjectVariational methods
dc.subjectDrag
dc.titleThe drag work minimization path for a flying object with altitude-dependent drag parameters
dc.typeArticle

Files