Energy, Exergy Analysis and Sustainability Assessment of a Thermal Power Plant Operating in Various Environmental Conditions Using Real Operational Data
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
It is well known that fossil fuels, especially coal, are still intensively used when considering the distribution of the main energy demand for electricity generation. Efforts to increase and optimise the efficiency of energy production are accelerating as global demand for energy continues to rise. In meeting the world's energy needs, thermal power plants have an essential role to play. However, it remains an ongoing concern to improve their performance and sustainability. In this study, based on real operating data at varying ambient temperatures, an exergy analysis and an exergy-based sustainability assessment of a 210 MW coal-fired thermal power plant in Turkey are presented. The results of the energy analysis show that 59.01% of the total energy destruction belongs to the boiler and 12.29% to the intermediate-pressure turbine. This means that these are the main components for energy analysis. According to the obtained results of the exergy analysis, the boiler is the main constituent with the maximum exergy destruction, with a rate of 71.00% among the other constituents at the reference temperature of 25 degrees C. In addition, the relative irreversibility values were calculated as 79.43% in the boiler, 5.42% in the intermediate-pressure turbine (IPT), and 4.22% in the low-pressure turbine (LPT). These are the components that cause the most intensive irreversibility among the other plant components. Moreover, the component that had the greatest exergy efficiency was the ejector, at 98.62%, followed by the high-pressure heater (HPH-3) at 96.00%, the low-pressure heater (LPH-2) at 88.16%, and the high-pressure turbine (HPT) at 86.12%. The sustainability efficiency indicator (SEI) and the exergetic ecological index (ECEI) for the thermal power plant were 2.50 and 0.245, respectively, according to the exergy-based sustainability indices. The boiler, the turbine group, and the condenser are especially significant for increasing plant efficiency due to their high potential for improvement.