Bernstein series solution of linear second-order partial differential equations with mixed conditions

dc.contributor.authorIsik O.R.
dc.contributor.authorSezer M.
dc.contributor.authorGuney Z.
dc.date.accessioned2024-07-22T08:15:22Z
dc.date.available2024-07-22T08:15:22Z
dc.date.issued2014
dc.description.abstractThe purpose of this study is to present a new collocation method for numerical solution of linear PDEs under the most general conditions. The method is given with a priori error estimate. By using the residual correction procedure, the absolute error can be estimated. Also, one can specify the optimal truncation limit n, which gives better result in any norm. Finally, the effectiveness of the method is illustrated in some numerical experiments. Numerical results are consistent with the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.
dc.identifier.DOI-ID10.1002/mma.2817
dc.identifier.issn01704214
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/16723
dc.language.isoEnglish
dc.publisherJohn Wiley and Sons Ltd
dc.subjectPartial differential equations
dc.subjectCollocation method
dc.subjectNumerical experiments
dc.subjectNumerical results
dc.subjectNumerical solution
dc.subjectPriori error estimate
dc.subjectResidual correction
dc.subjectSecond-order partial differential equation
dc.subjectSeries solutions
dc.subjectNumerical methods
dc.titleBernstein series solution of linear second-order partial differential equations with mixed conditions
dc.typeArticle

Files