Gamma irradiated Cu-doped TiO2 nanoparticles for selective ammonia sensing
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this research, the effect of gamma ray doses on volatile organic compound (VOC) sensing properties of Cu doped TiO2 nanoparticles are studied to further improve the VOC sensing performance. Pure and Cu doped TiO2 nanoparticles have been prepared by sol-gel technique on Au interdigitated plexiglas substrate and irradiated by gamma-rays with doses varying from 1 to 150 KGy. The irradiation was performed by using 60Co as gamma source. The structural, morphology and modifications were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Atomic Force Microscopy (AFM) techniques. The sensing performance of these films toward ethanol, methanol, 2-propanol, benzene, toluene, xylene and ammonia vapors has been tested. It was observed that no remarkable sensor response to any vapors except ammonia was observed at room temperature. Changes in sensor’ ammonia sensitivity have been correlated with the gamma radiation dose and Cu doping ratio. Maximum sensing performance was observed with 3% Cu doped TiO2 exposed to gamma radiation dose of 150 kGy. © 2024 Elsevier Ltd
Description
Keywords
Ammonia , Copper , Gamma rays , Irradiation , Morphology , Scanning electron microscopy , Semiconductor doping , Sol-gel process , Sol-gels , TiO2 nanoparticles , Volatile organic compounds , 2 propanol , alcohol , ammonia , benzene , cobalt 60 , copper nanoparticle , methanol , poly(methyl methacrylate) , titanium dioxide nanoparticle , toluene , volatile organic compound , xylene , Ammonia sensing , Cu-doped , Cu-doping , Gamma irradiation , Gamma-ray dose , Plexiglas , Selective detection , Sensing performance , Sensing property , Sol-gel technique , Article , atomic force microscopy , chemical parameters , controlled study , correlation analysis , gamma irradiation , gamma radiation , human , radiation dose , room temperature , scanning electron microscopy , selective ammonia sensing , sol-gel , surface area , synthesis , vapor , X ray diffraction , Titanium dioxide