Investigation of metallurgical properties of Al-Si-Mg casting alloys with integrated computational materials engineering for wheel production; [Investigación de las propiedades metalúrgicas de las aleaciones coladas Al-Si-Mg para la producción de llantas utilizando ingeniería de materiales computacional integrada]

dc.contributor.authorYağcı T.
dc.contributor.authorCöcen Ü.
dc.contributor.authorÇulha O.
dc.contributor.authorArmakan E.
dc.date.accessioned2024-07-22T08:03:32Z
dc.date.available2024-07-22T08:03:32Z
dc.date.issued2023
dc.description.abstractIn this study, integrated computational materials engineering, which is one of the new generation approaches in materials science, was used in the production of aluminum alloy wheels by low pressure die casting method. In casting alloys, the efficiency of grain refinement provided by master alloys added to the melt decreases with increasing silicon content of the alloy. In this context, as-cast properties of silicon reduced (Si: 5.0 wt.%) alloys with different Mg ratios (Mg: 3.0, 5.0, 7.0 wt.%) are discussed using integrated computational materials engineering approaches. It has been evaluated whether the examined alloys can be an alternative to the AlSi7Mg0.3 alloy, which is currently used traditionally in the production of aluminum-based wheels, with their microstructural and mechanical properties. The study consists of three stages which are computer-aided production, pilot production, testing and characterization studies. In computer-aided production, original sub-eutectic compositions were determined in types and amounts of alloying elements, alloy designs were realized and a database was created with a computational materials engineering software. Then, low pressure die casting analysis were performed in a virtual environment by transferring these data directly to the casting simulation software. Thus, the microstructural and mechanical properties of the wheel were obtained computationally on the basis of the varying alloy composition. In the second stage, the virtually designed alloy compositions were prepared and sample wheels were manufactured by the low pressure die casting method on an industrial scale. In the testing and characterization phase, spectral analyses, macro and microstructural examinations, hardness measurements and tensile tests were carried out. As a result of this study, it was determined that the studied alloys could be used in the production of wheels by the low pressure die casting method considering the metallurgical properties expected from the wheel. In addition, it is thought that the mathematical design of the material with integrated computational materials engineering approaches before casting simulations will play an active role in the competitiveness and sustainability of the aluminum industry in technological conditions. © 2023 CSIC.
dc.identifier.DOI-ID10.3989/revmetalm.233
dc.identifier.issn00348570
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/12336
dc.language.isoEnglish
dc.publisherCSIC Consejo Superior de Investigaciones Cientificas
dc.rightsAll Open Access; Gold Open Access
dc.subjectAlloying elements
dc.subjectCompetition
dc.subjectComputer aided analysis
dc.subjectDie casting
dc.subjectDies
dc.subjectSilicon alloys
dc.subjectSoftware testing
dc.subjectSpectrum analysis
dc.subjectSustainable development
dc.subjectTensile testing
dc.subjectWheels
dc.subjectAl-Si-Mg
dc.subjectCasting alloy
dc.subjectCasting method
dc.subjectComputational materials
dc.subjectIntegrated computational material engineering
dc.subjectLow pressure die casting
dc.subjectMaterial engineering
dc.subjectMetallurgical properties
dc.subjectMicro-structural
dc.subjectSimulation
dc.subjectAluminum alloys
dc.titleInvestigation of metallurgical properties of Al-Si-Mg casting alloys with integrated computational materials engineering for wheel production; [Investigación de las propiedades metalúrgicas de las aleaciones coladas Al-Si-Mg para la producción de llantas utilizando ingeniería de materiales computacional integrada]
dc.typeArticle

Files