Browsing by Subject "Polyhydroxyethyl Methacrylate"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Radiolabeling of new generation magnetic poly(HEMA-MAPA) nanoparticles with 131I and preliminary investigation of its radiopharmaceutical potential using albino Wistar rats(John Wiley and Sons Ltd, 2013) Avcibaşi U.; Demiroǧlu H.; Ediz M.; Akalin H.A.; Özçalişkan E.; Şenay H.; Türkcan C.; Özcan Y.; Akgöl S.; Avcibaşi N.In this study, N-methacryloyl-l-phenylalanine (MAPA) containing poly(2-hydroxyethylmethacrylate) (HEMA)-based magnetic poly(HEMA-MAPA) nanobeads [mag-poly(HEMA-MAPA)] were radiolabeled with 131I [ 131I-mag-poly(HEMA-MAPA)], and the radiopharmaceutical potential of 131I-mag-poly(HEMA-MAPA) was investigated. Quality control studies were carried out by radiochromatographic method to be sure that 131I binded to mag-poly(HEMA-MAPA) efficiently. In this sense, binding yield of 131I-mag-poly(HEMA-MAPA) was found to be about 95-100%. In addition to this, optimum radiodination conditions for 131I-mag-poly(HEMA- MAPA) were determined by thin-layer radiochromatography studies. In addition to thin-layer radiochromatography studies, lipophilicity (partition coefficient) and stability studies for 131I-mag-poly(HEMA-MAPA) were realized. It was determined that lipophilicities of mag-poly(HEMA-MAPA) and 131I-mag-poly(HEMA-MAPA) were 0.12 ± 0.01 and 1.79 ± 0.76 according to ACD/logP algorithm program, respectively. Stability of the radiolabeled compound was investigated in time intervals given as 0, 30, 60, 180, and 1440 min. It was found that 131I-mag-poly(HEMA-MAPA) existed as a stable complex in rat serum within 60 min. After that, biodistribution and scintigraphy studies were carried out by using albino Wistar rats. It was determined that the most important 131I activity uptake was observed in the breast, the ovary, and the pancreas. Scintigraphy studies well supported biodistribution results. Copyright © 2013 John Wiley & Sons, Ltd.Item A novel radiolabeled graft polymer: Investigation of the radiopharmaceutical potential using Albino Wistar rats(Elsevier Ltd, 2019) Avcıbaşı U.; Ateş B.; Ünak P.; Gümüşer F.G.; Gülcemal S.; Ol K.K.; Akgöl S.; Tekin V.Fe3O4 magnetic graft-Lys-poly(HEMA) was synthesized, labeled with 99mTc for the first time and its radiopharmaceutical potential was investigated using animal models in this study. Quality control procedures were carried out using thin layer radiochromatography. The labeling yield of radiolabeled polymer was found to be about 100%. Then, stability and lipophilicity were determined. The lipophilicity of 99mTc labeled Fe3O4 graft-Lys-poly(HEMA) was found to be 3.77. The serum stability experiments demonstrated that approximately 100% of radiolabeled polymer existed as an intact complex in the rat serum within 240 min. Biodistribution of radiolabeled magnetic graft-Lys-poly(HEMA) was performed on female Albino Wistar rats by scintigraphy and biodistribution studies. High uptake was seen in the stomach, the pancreas, brain, ovarian, intestines and the breast. © 2019 Elsevier Ltd