Browsing by Subject "middle cerebral artery occlusion"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effect of difluoromethylornithine on reperfusion injury after temporary middle cerebral artery occlusion(2005) Temiz C.; Dogan A.; Baskaya M.K.; Dempsey R.J.Polyamines have been shown to play an important role in the disturbance of the blood-brain barrier (BBB) in a number of pathological states including ischemia. BBB disturbances may be almost completely prevented by treating animals with the ornithine decarboxylase (ODC) inhibitor, α- difluoromethylornithine (DFMO). DFMO has been also shown to prevent N-Methyl-d-aspartate (NMDA) toxicity in tissue cultures. It has been suggested that the pathological disturbances in polyamine metabolism observed following cerebral ischemia, particularly the post-ischemic increase in putrescine, may contribute to the ischemic injury that is most evident in the CA1 subfield of the hippocampus. In this study, effects of DFMO in cerebral ischemia and reperfusion were examined. The results showed that inhibition of the polyamine system by DFMO decreased ischemic injury volume and brain tissue water content in a dose-dependent manner, without change in vital signs, including systemic arterial blood pressure, arterial partial oxygen pressure, regional cerebral blood flow and body temperature. © 2005 Published by Elsevier Ltd.Item The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia(2008) Strbian D.; Durukan A.; Pitkonen M.; Marinkovic I.; Tatlisumak E.; Pedrono E.; Abo-Ramadan U.; Tatlisumak T.The blood-brain barrier (BBB) is the principal regulator of blood-borne substance entry into the brain parenchyma. Therefore, BBB leakage, which leads to cerebral edema and influx of toxic substances, is common in pathological conditions such as cerebral ischemia, inflammation, trauma, and tumors. The leakage of BBB after ischemia-reperfusion injury has long been considered to be biphasic, although a considerable amount of discrepancies as for the timing of the second opening does exist among the studies. This led us to evaluate systematically and quantitatively the dynamics of BBB leakage in a rat model of 90-min ischemia-reperfusion, using gadolinium-enhanced (small molecule) magnetic resonance imaging and fluorescent dye Evans Blue (large molecule). BBB leakage was assessed at the following time points after reperfusion: 25 min, 2, 4, 6, 12, 18, 24, 36, 48, and 72 h, and 1, 2, 3, 4, and 5 weeks. We observed BBB leakage for both gadolinium and Evans Blue as early as 25 min after reperfusion. Thereafter, BBB remained open for up to 3 weeks for Evans Blue and up to 5 weeks for gadolinium. Our results show that BBB leakage after ischemia-reperfusion injury in the rat is continuous and long-lasting, without any closure up to several weeks. This is the first systematic and extensive study fully demonstrating BBB leakage dynamics following transient brain ischemia and the findings are of major clinical and experimental interest. © 2008 IBRO.Item TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10 min or shorter(Elsevier B.V., 2017) Durukan Tolvanen A.; Tatlisumak E.; Pedrono E.; Abo-Ramadan U.; Tatlisumak T.Transient ischemic attack (TIA) has received only little attention in the experimental research field. Recently, we introduced a TIA model for mice, and here we set similar principles for simulating this human condition in Wistar rats. In the model: 1) transient nature of the event is ensured, and 2) 24 h after the event animals are free from any sensorimotor deficit and from any detectable lesion by magnetic resonance imaging (MRI). Animals experienced varying durations of ischemia (5, 10, 12.5, 15, 25, and 30 min, n = 6–8 per group) by intraluminal middle cerebral artery occlusion (MCAO). Ischemia severity and reperfusion rates were controlled by cerebral blood flow measurements. Sensorimotor neurological evaluations and MRI at 24 h differentiated between TIA and ischemic stroke. Hematoxylin and eosin staining and apoptotic cell counts revealed pathological correlates of the event. We found that already 12.5 min of ischemia was long enough to induce ischemic stroke in Wistar rats. Ten min or shorter durations induced neither gross neurological deficits nor infarcts visible on MRI, but histologically caused selective neuronal necrosis. A separate group of animals with 10 min of ischemia followed up to 1 week after reperfusion remained free of infarction and any MRI signal change. Thus, 10 min or shorter focal cerebral ischemia induced by intraluminal MCAO in Wistar rats provides a clinically relevant TIA the rat. This model is useful for studying molecular correlates of TIA. © 2017 Elsevier B.V.